Temperature dependence of tropical cirrus properties and radiative effects

[1] The temperature dependencies of cirrus properties are studied using a dual polarization lidar and Mesosphere Stratosphere Troposphere (MST) radar at the tropical station Gadanki (13.5°N, 79.2°E). Cirrus clouds are generally observed in the altitude region 10 to 18 km, with midcloud temperature in the range −85° to −40°C. The cloud temperature decreases with increase in cloud altitude as expected. The mean cloud thickness is generally in the range 0.7 to 1.7 km. For temperatures in the range −75° to −50°C the cloud thickness is ∼1.7 km and shows a tendency to decrease at lower temperatures. The linear depolarization ratio (LDR) within the cloud shows a small increase with decrease in temperature. The cloud extinction and optical depth increases with increase in temperature. The temperature dependence of cirrus extinction/optical depth has been parameterized using different analytical forms such as exponential, linear, and polynomial, which shows that a second-order polynomial function is well suited for describing the temperature dependence of extinction coefficient/optical depth of tropical cirrus. The climate sensitivity factor derived based on the empirical relations shows an increase with decrease in cloud optical depth. The present study, however, indicates that the cirrus becomes radiatively significant when its optical depth exceeds a threshold value of 0.03.

[1]  Lidar observations of cirrus cloud near the tropical tropopause: general features , 2003 .

[2]  K. Sassen,et al.  Tropical cirrus cloud properties derived from TOGA/COARE airborne polarization lidar , 2000 .

[3]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[4]  A. C. Dilley,et al.  Remote Sounding of High Clouds. Part VI: Optical Properties of Midlatitude and Tropical Cirrus , 1987 .

[5]  K. Revathy,et al.  Deduction of temperature profile from MST radar observations of vertical wind , 1996 .

[6]  T. Ackerman,et al.  Heating rates in tropical anvils , 1988 .

[7]  Chester S. Gardner,et al.  Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations , 1986 .

[8]  K. Kumar,et al.  VHF radar observation of atmospheric winds, associated shears and C 2 n at a tropical location: interdependence and seasonal pattern , 2001 .

[9]  K. Parameswaran,et al.  Temporal Variations of the Tropical Tropopause Characteristics. , 1986 .

[10]  Yoshihide Takano,et al.  Radiative Transfer in Cirrus Clouds. Part III: Light Scattering by Irregular Ice Crystals , 1995 .

[11]  Kenneth Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .

[12]  K. Sassen,et al.  Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties , 2002 .

[13]  J. Comstock,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .

[14]  Prabha R. Nair,et al.  Lidar observations of cirrus cloud near the tropical tropopause: temporal variations and association with tropospheric turbulence , 2003 .

[15]  Andrew J. Heymsfield,et al.  Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE II , 1995 .

[16]  J. Comstock,et al.  Ground‐based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts , 2002 .

[17]  L R Bissonnette,et al.  Lidar effective multiple-scattering coefficients in cirrus clouds. , 1997, Applied optics.

[18]  J. Spinhirne,et al.  Cirrus infrared parameters and shortwave reflectance relations from observations , 1996 .

[19]  Leopoldo Stefanutti,et al.  One year of cloud lidar data from Dumont d'Urville (Antarctica): 1. General overview of geometrical and optical properties , 1993 .

[20]  A. Ansmann,et al.  Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. , 1992, Applied optics.

[21]  G. Mace,et al.  Cirrus horizontal inhomogeneity and OLR bias , 2000 .

[22]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[23]  Andrew J. Heymsfield,et al.  High Albedos of Cirrus in the Tropical Pacific Warm Pool: Microphysical Interpretations from CEPEX and from Kwajalein, Marshall Islands , 1996 .

[24]  Q. Fu,et al.  Parameterization of the Radiative Properties of Cirrus Clouds , 1993 .

[25]  M. T. Osborn,et al.  Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization‐sensitive lidar , 1992 .

[26]  Andrew J. Heymsfield,et al.  A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content , 1984 .

[27]  L. Pfister,et al.  A conceptual model of the dehydration of air due to freeze‐drying by optically thin, laminar cirrus rising slowly across the tropical tropopause , 2001 .

[28]  Parameterization of Infrared Absorption in Midlatitude Cirrus Clouds , 2003 .

[29]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[30]  Stuart A. Young,et al.  LIRAD Observations of Tropical Cirrus Clouds in MCTEX. Part I: Optical Properties and Detection of Small Particles in Cold Cirrus* , 2002 .

[31]  P. Balamuralidhar,et al.  Indian MST radar 1. System description and sample vector wind measurements in ST mode , 1995 .

[32]  N. Sugimoto,et al.  Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system. , 2000, Applied optics.

[33]  G. McFarquhar,et al.  Thin and Subvisual Tropopause Tropical Cirrus: Observations and Radiative Impacts , 2000 .

[34]  C. Platt,et al.  Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer Measurements , 1979 .

[35]  Kenneth Sassen,et al.  Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research , 1992 .

[36]  Lidar observations of equatorial cirrus clouds at Mahé Seychelles , 2003 .

[37]  Optical and microphysical properties of a cold cirrus cloud : Evidence for regions of small ice particles. , 1989 .

[38]  Ulrike Lohmann,et al.  Influence of cirrus cloud radiative forcing on climate and climate sensitivity in a general circulation model , 1995 .

[39]  K. Sassen,et al.  Parry arc: a polarization lidar, ray-tracing, and aircraft case study. , 2000, Applied optics.

[40]  R. Fisher Statistical methods for research workers , 1927, Protoplasma.

[41]  Brian J. Hoskins,et al.  The tropical tropopause , 1998 .

[42]  James H. Churnside,et al.  The Optical Properties of Equatorial Cirrus from Observations in the ARM Pilot Radiation Observation Experiment , 1998 .

[43]  C. Platt,et al.  Remote Sounding of High Clouds. IV: Observed Temperature Variations in Cirrus Optical Properties , 1981 .

[44]  M. McCormick,et al.  A 6‐year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990) , 1996 .

[45]  K. Parameswaran,et al.  Optical properties of cirrus clouds observed below the tropical tropopause , 2002, SPIE Optics + Photonics.

[46]  Harshvardhan,et al.  Temperature dependence of cirrus extinction - Implications for climate feedback , 1988 .

[47]  K. Sassen Cirrus clouds and halos: A closer look , 1999 .

[48]  D. P. Wareing,et al.  Lidar observations of the horizontal orientation of ice crystals in cirrus clouds , 1990 .

[49]  Michael K. Griffin,et al.  Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications , 1989 .