Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries
暂无分享,去创建一个
Kathryn A. Striebel | Elton J. Cairns | John T. Vaughey | Michael M. Thackeray | Seung-Wan Song | K. Striebel | E. Cairns | M. Thackeray | J. Vaughey | Seung‐Wan Song | R. P. Reade | R. Reade
[1] T. Jacobsen,et al. Determination of the differential capacity of intercalation electrode materials by slow potential scans , 1983 .
[2] Noriyuki Tamura,et al. Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes , 2002 .
[3] W. B. Pearson. ELECTRICAL RESISTIVITY, HALL COEFFICIENT, AND THERMOELECTRIC POWER OF AuSb2 AND Cu2Sb , 1964 .
[4] K. Striebel,et al. Electrochemical Studies of Substituted Spinel Thin Films , 1999 .
[5] Yong Liang,et al. A High Capacity Nano Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .
[6] Sylvie Grugeon,et al. Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium , 2001 .
[7] X. Zhao,et al. Electrochemical properties of some Sb or Te based alloys for candidate anode materials of lithium-ion batteries , 2001 .
[8] K. Edström,et al. Structural transformations in intermetallic electrodes for lithium batteries : an in situ XRD study , 2003 .
[9] John T. Vaughey,et al. Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .
[10] J. Yang,et al. Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium‐Ion Batteries , 1999 .
[11] K. Striebel,et al. Electrochemical Studies of Nanoncrystalline Mg2Si Thin Film Electrodes Prepared by Pulsed Laser Deposition , 2003 .
[12] Christopher S. Johnson,et al. Electrochemistry and in-situ x-ray diffraction of InSb in lithium batteries. , 2000 .
[13] K. Striebel,et al. Electrochemical Behavior of LiMn2 O 4 and LiCoO2 Thin Films Produced with Pulsed Laser Deposition , 1996 .
[14] K. Nakamoto,et al. The handbook of infrared and Raman spectra of inorganic compounds and organic salts , 1997 .
[15] John T. Vaughey,et al. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study , 2001 .
[16] R. Huggins,et al. Thermodynamic Properties of the Intermetallic Systems Lithium‐Antimony and Lithium‐Bismuth , 1978 .
[17] Christopher S. Johnson,et al. Structural considerations of intermetallic electrodes for lithium batteries , 2003 .
[18] J. Dahn,et al. Electrochemistry of InSb as a Li Insertion Host: Problems and Prospects , 2001 .
[19] I. Uchida,et al. Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte , 2002 .
[20] D. Aurbach,et al. Frumkin intercalation isotherm — a tool for the description of lithium insertion into host materials: a review , 1999 .
[21] Ralph E. White,et al. Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .
[22] K. Striebel,et al. Cyclic voltammetry of pulsed laser deposited Li{sub x}Mn{sub 2}O{sub 4} thin films , 1998 .
[23] M. Thackeray,et al. Intermetallic Insertion Electrodes with a Zinc Blende‐Type Structure for Li Batteries: A Study of Li x InSb ( 0 ≤ x ≤ 3 ) , 1999 .
[24] Martin Winter,et al. Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .
[25] G. Zhuang,et al. Analysis of the Chemical Composition of the Passive Film on Li-Ion Battery Anodes Using Attentuated Total Reflection Infrared Spectroscopy , 2003 .
[26] M. Armand,et al. Modelling the voltammetric study of intercalation in a host structure: application to lithium intercalation in RuO2 , 1985 .
[27] Christopher S. Johnson,et al. Structural and mechanistic features of intermetallic materials for lithium batteries , 2000 .
[28] R. Huggins,et al. Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .
[29] R. Kostecki,et al. Electrochemical and Infrared Studies of the Reduction of Organic Carbonates , 2001 .
[30] R. Nyquist,et al. INFRARED SPECTRA OF INORGANIC COMPOUNDS , 1971 .
[31] K. Aoki,et al. Theory of linear sweep voltammetry with finite diffusion space , 1983 .
[32] Allen J. Bard,et al. Electrochemical Methods: Fundamentals and Applications , 1980 .
[33] Liquan Chen,et al. Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries , 2001 .
[34] J. Shim,et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature , 2002 .
[35] J. Jumas,et al. Electrochemical reaction of lithium with the CoSb3 skutterudite , 1999 .
[36] Michael M. Thackeray,et al. Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .
[37] C. Pérez-Vicente,et al. Electrochemical reactions of polycrystalline CrSb2 in lithium batteries , 2001 .