Numerical aspects of nonlinear Schrodinger equations in the presence of caustics

The aim of this paper is to develop on the asymptotics of some one-dimensional nonlinear Schrodinger equations from both the theoretical and the numerical perspectives, when a caustic is formed. We review rigorous results in the field and give some heuristics in cases where justification is still needed. The scattering operator theory is recalled. Numerical experiments are carried out on the focus point singularity for which several results have been proved rigorously. Furthermore, the scattering operator is numerically studied. Finally, experiments on the cusp caustic are displayed, and similarities with the focus point are discussed. Several shortcomings of spectral time-splitting schemes are investigated.

[1]  K. Nakanishi,et al.  Remarks on scattering for nonlinear Schrödinger equations , 2002 .

[2]  M. Zworski,et al.  Instability for the Semiclassical Non-linear Schrödinger Equation , 2005 .

[3]  J. K. Hunter,et al.  Caustics of nonlinear waves , 1987 .

[4]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[5]  J. Ginibre,et al.  On the existence of the wave operators for a class of nonlinear Schrödinger equations , 1994 .

[6]  Emi Carles,et al.  Geometric Optics with Caustic Crossing for Some Nonlinear Schr¨ odinger Equations , 2000 .

[7]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .

[8]  L. Gosse A case study on the reliability of multiphase WKB approximation for the one-dimensional Schrödinger equation , 2005 .

[9]  Walter A. Strauss,et al.  Nonlinear Scattering Theory , 1974 .

[10]  Johannes J. Duistermaat,et al.  Oscillatory integrals, lagrange immersions and unfolding of singularities , 1974 .

[11]  Guy Métivier,et al.  Focusing at a point and absorption of nonlinear oscillations , 1995 .

[12]  R'emi Carles,et al.  WKB Analysis for Nonlinear Schrödinger Equations with Potential , 2006, math/0601611.

[13]  T. Cazenave,et al.  Rapidly decaying solutions of the nonlinear Schrödinger equation , 1992 .

[14]  Peter A. Markowich,et al.  Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.

[15]  Laurent Gosse,et al.  TWO MOMENT SYSTEMS FOR COMPUTING MULTIPHASE SEMICLASSICAL LIMITS OF THE SCHRÖDINGER EQUATION , 2003 .

[16]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. II. Scattering theory, general case , 1979 .

[17]  Remi Carles Geometric Optics and Instability for Semi-Classical Schrödinger Equations , 2007 .

[18]  Formation of singularities for viscosity solutions of Hamilton-Jacobi equations in one space variable , 1993 .

[19]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[20]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  Donald Ludwig,et al.  Uniform asymptotic expansions at a caustic , 1966 .

[23]  Rémi Carles,et al.  Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation , 2003, math/0702656.

[24]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[25]  J. Joly,et al.  Caustics for Dissipative Semilinear Oscillations , 2000 .

[26]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[27]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy , 1981 .

[28]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[29]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[30]  Rémi Carles,et al.  Remarques sur les mesures de Wigner , 2001 .

[31]  E. Sonnendrücker,et al.  Numerical Methods for Hyperbolic and Kinetic Problems , 2005 .

[32]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[33]  Jacqueline E. Barab,et al.  Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation , 1984 .