Numerical aspects of nonlinear Schrodinger equations in the presence of caustics
暂无分享,去创建一个
[1] K. Nakanishi,et al. Remarks on scattering for nonlinear Schrödinger equations , 2002 .
[2] M. Zworski,et al. Instability for the Semiclassical Non-linear Schrödinger Equation , 2005 .
[3] J. K. Hunter,et al. Caustics of nonlinear waves , 1987 .
[4] F. Dalfovo,et al. Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.
[5] J. Ginibre,et al. On the existence of the wave operators for a class of nonlinear Schrödinger equations , 1994 .
[6] Emi Carles,et al. Geometric Optics with Caustic Crossing for Some Nonlinear Schr¨ odinger Equations , 2000 .
[7] A. Durán,et al. The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .
[8] L. Gosse. A case study on the reliability of multiphase WKB approximation for the one-dimensional Schrödinger equation , 2005 .
[9] Walter A. Strauss,et al. Nonlinear Scattering Theory , 1974 .
[10] Johannes J. Duistermaat,et al. Oscillatory integrals, lagrange immersions and unfolding of singularities , 1974 .
[11] Guy Métivier,et al. Focusing at a point and absorption of nonlinear oscillations , 1995 .
[12] R'emi Carles,et al. WKB Analysis for Nonlinear Schrödinger Equations with Potential , 2006, math/0601611.
[13] T. Cazenave,et al. Rapidly decaying solutions of the nonlinear Schrödinger equation , 1992 .
[14] Peter A. Markowich,et al. Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.
[15] Laurent Gosse,et al. TWO MOMENT SYSTEMS FOR COMPUTING MULTIPHASE SEMICLASSICAL LIMITS OF THE SCHRÖDINGER EQUATION , 2003 .
[16] J. Ginibre,et al. On a class of nonlinear Schrödinger equations. II. Scattering theory, general case , 1979 .
[17] Remi Carles. Geometric Optics and Instability for Semi-Classical Schrödinger Equations , 2007 .
[18] Formation of singularities for viscosity solutions of Hamilton-Jacobi equations in one space variable , 1993 .
[19] Christophe Besse,et al. Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[20] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[21] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[22] Donald Ludwig,et al. Uniform asymptotic expansions at a caustic , 1966 .
[23] Rémi Carles,et al. Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation , 2003, math/0702656.
[24] W. Ketterle,et al. Bose-Einstein condensation , 1997 .
[25] J. Joly,et al. Caustics for Dissipative Semilinear Oscillations , 2000 .
[26] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[27] Walter A. Strauss,et al. Nonlinear scattering theory at low energy , 1981 .
[28] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[29] J. Bourgain,et al. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .
[30] Rémi Carles,et al. Remarques sur les mesures de Wigner , 2001 .
[31] E. Sonnendrücker,et al. Numerical Methods for Hyperbolic and Kinetic Problems , 2005 .
[32] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[33] Jacqueline E. Barab,et al. Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation , 1984 .