Scale-Dependent Uncertainties in Global QPFs and QPEs from NWP Model and Satellite Fields

Abstract Global precipitation forecasts from numerical weather prediction (NWP) models can be verified using the near-global coverage of satellite precipitation retrievals. However, inaccuracies in satellite precipitation analyses complicate the interpretation of forecast errors that result from verification of an NWP model against satellite observations. In this study, assessments of both a global quantitative precipitation estimate (QPE) from a satellite precipitation product and corresponding global quantitative precipitation forecast (QPF) from a global NWP model are conducted using available global land-based gauge data. A scale decomposition technique is devised, coupled with seasonal and spatial classifications, to evaluate these inaccuracies. The results are then analyzed in context with various physical precipitation systems, including heavy monsoonal rains, light Mediterranean winter rains, and North American convective-related and midlatitude cyclone–related precipitation. In general, global mo...

[1]  A. Barnston,et al.  Long-Lead Seasonal Forecast Skill in Far Eastern Asia Using Canonical Correlation Analysis , 2001 .

[2]  Isztar Zawadzki,et al.  Analysis of scale dependence of quantitative precipitation forecast verification: A case‐study over the Mackenzie river basin , 2006 .

[3]  D. Stephenson,et al.  A new intensity‐scale approach for the verification of spatial precipitation forecasts , 2004 .

[4]  Jun Du,et al.  Short-Range Ensemble Forecasting of Quantitative Precipitation , 1997 .

[5]  Jason J. Levit,et al.  Multiscale Statistical Properties of a High-Resolution Precipitation Forecast , 2001 .

[6]  J. Molinari,et al.  Parameterization of Convective Precipitation in Mesoscale Numerical Models: A Critical Review , 1992 .

[7]  Masao Kanamitsu,et al.  Description of the NMC Global Data Assimilation and Forecast System , 1989 .

[8]  Richard Kronland-Martinet,et al.  Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..

[9]  Matthew Rodell,et al.  Analysis of Multiple Precipitation Products and Preliminary Assessment of Their Impact on Global Land Data Assimilation System Land Surface States , 2005 .

[10]  J. Susskind,et al.  Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations , 2001 .

[11]  J. McBride,et al.  Verification of precipitation in weather systems: determination of systematic errors , 2000 .

[12]  A. Western,et al.  Characteristic space scales and timescales in hydrology , 2003 .

[13]  R. Petersen,et al.  Spatial Resolution Impacts on National Meteorological Center Nested Grid Model Simulations , 1993 .

[14]  Robert F. Adler,et al.  Estimation of Monthly Rainfall over Japan and Surrounding Waters from a Combination of Low-Orbit Microwave and Geosynchronous IR Data , 1993 .

[15]  P. Xie,et al.  The Global Precipitation Climatology Project: First Algorithm Intercomparison Project , 1994 .

[16]  Ying-Hwa Kuo,et al.  Incorporating the SSM/I-Derived Precipitable Water and Rainfall Rate into a Numerical Model: A Case Study for the ERICA IOP-4 Cyclone , 2000 .

[17]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[18]  J. O'Brien,et al.  An Introduction to Wavelet Analysis in Oceanography and Meteorology: With Application to the Dispersion of Yanai Waves , 1993 .

[19]  S. Koch,et al.  Determination of temporal and spatial characteristics of atmospheric gravity waves combining cross-spectral analysis and wavelet transformation , 2005 .

[20]  R. Pielke Mesoscale Meteorological Modeling , 1984 .

[21]  Frederick Sanders Trends in Skill of Daily Forecasts of Temperature and Precipitation, 1966–78 , 1979 .

[22]  M. Morrissey,et al.  Validation and Uncertainty Analysis of Satellite Rainfall Algorithms , 2000 .

[23]  Roberto Buizza,et al.  Quantitative Precipitation Forecasts over the United States by the ECMWF Ensemble Prediction System , 2001 .

[24]  J. Janowiak,et al.  COMPARISON OF NEAR-REAL-TIME PRECIPITATION ESTIMATES FROM SATELLITE OBSERVATIONS AND NUMERICAL MODELS , 2007 .

[25]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[26]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[27]  Chungu Lu,et al.  Evaluation of Short-Range Quantitative Precipitation Forecasts from a Time-Lagged Multimodel Ensemble , 2009 .

[28]  Winifred C. Lambert,et al.  A Simple Technique for Using Radar Data in the Dynamic Initialization of a Mesoscale Model , 2000 .

[29]  Naoki Saito,et al.  Wavelets, their autocorrelation functions, and multiresolution representations of signals , 1992, Other Conferences.

[30]  B. Brown,et al.  Object-Based Verification of Precipitation Forecasts. Part I: Methodology and Application to Mesoscale Rain Areas , 2006 .

[31]  M. Baldwin,et al.  THE WGNE ASSESSMENT OF SHORT-TERM QUANTITATIVE PRECIPITATION FORECASTS , 2003 .

[32]  B. Rudolf,et al.  A New Monthly Precipitation Climatology for the Global Land Areas for the Period 1951 to 2000 , 2004 .

[33]  Akio Arakawa,et al.  Closure Assumptions in the Cumulus Parameterization Problem , 1986 .

[34]  J. F. Kirby,et al.  Which wavelet best reproduces the Fourier power spectrum? , 2005, Comput. Geosci..

[35]  Merab Menabde,et al.  Multifractal characterization of rain fields with a strong orographic influence , 1996 .

[36]  J. Janowiak,et al.  GPCP Pentad Precipitation analyses: An experimental dataset based on gauge observations and satellite estimates , 2003 .