On a deformed topological vertex

We introduce a deformed topological vertex and use it to define deformations of the topological string partition functions of some local Calabi-Yau geometries. We also work out some examples for which such deformations satisfy a deformed Gopakumar-Vafa integrality and can be identified with the equivariant indices of some naturally defined bundles on the framed moduli spaces.

[1]  H. Awata,et al.  Instanton counting, Macdonald function and the moduli space of D-branes , 2005, hep-th/0502061.

[2]  C. Vafa,et al.  The Topological Vertex , 2003, hep-th/0305132.

[3]  Kefeng Liu,et al.  Topological string partition functions as equivariant indices , 2004, math/0412089.

[4]  Chiu-Chu Melissa Liu,et al.  A mathematical theory of the topological vertex , 2004, math/0408426.

[5]  T. Eguchi,et al.  Geometric transitions, Chern–Simons gauge theory and Veneziano type amplitudes , 2003, hep-th/0312234.

[6]  C. Vafa,et al.  All Loop Topological String Amplitudes from Chern-Simons Theory , 2002, hep-th/0206164.

[7]  Jian Zhou A Conjecture on Hodge Integrals , 2003, math/0310282.

[8]  Jian Zhou Localizations on Moduli Spaces and Free Field Realizations of Feynman Rules , 2003, math/0310283.

[9]  A. Okounkov,et al.  Quantum Calabi-Yau and Classical Crystals , 2003, hep-th/0309208.

[10]  Kota Yoshioka,et al.  Instanton counting on blowup. I. 4-dimensional pure gauge theory , 2003, math/0306198.

[11]  A. Iqbal,et al.  SU(N) Geometries and Topological String Amplitudes , 2003, hep-th/0306032.

[12]  Andrei Okounkov,et al.  Seiberg-Witten theory and random partitions , 2003, hep-th/0306238.

[13]  A. Iqbal,et al.  Instanton Counting and Chern-Simons Theory , 2002, hep-th/0212279.

[14]  N. Nekrasov Seiberg-Witten prepotential from instanton counting , 2002, hep-th/0306211.

[15]  C. Vafa,et al.  Framed knots at large N , 2001, hep-th/0108064.

[16]  Sascha G. Lukac,et al.  THE HOMFLY POLYNOMIAL OF THE DECORATED HOPF LINK , 2001, math/0108011.

[17]  N. Nekrasov Trieste lectures on solitons in noncommutative gauge theories , 2000, hep-th/0011095.

[18]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[19]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .