Reverse engineering gene regulatory networks from measurement with missing values

BackgroundGene expression time series data are usually in the form of high-dimensional arrays. Unfortunately, the data may sometimes contain missing values: for either the expression values of some genes at some time points or the entire expression values of a single time point or some sets of consecutive time points. This significantly affects the performance of many algorithms for gene expression analysis that take as an input, the complete matrix of gene expression measurement. For instance, previous works have shown that gene regulatory interactions can be estimated from the complete matrix of gene expression measurement. Yet, till date, few algorithms have been proposed for the inference of gene regulatory network from gene expression data with missing values.ResultsWe describe a nonlinear dynamic stochastic model for the evolution of gene expression. The model captures the structural, dynamical, and the nonlinear natures of the underlying biomolecular systems. We present point-based Gaussian approximation (PBGA) filters for joint state and parameter estimation of the system with one-step or two-step missing measurements. The PBGA filters use Gaussian approximation and various quadrature rules, such as the unscented transform (UT), the third-degree cubature rule and the central difference rule for computing the related posteriors. The proposed algorithm is evaluated with satisfying results for synthetic networks, in silico networks released as a part of the DREAM project, and the real biological network, the in vivo reverse engineering and modeling assessment (IRMA) network of yeast Saccharomyces cerevisiae.ConclusionPBGA filters are proposed to elucidate the underlying gene regulatory network (GRN) from time series gene expression data that contain missing values. In our state-space model, we proposed a measurement model that incorporates the effect of the missing data points into the sequential algorithm. This approach produces a better inference of the model parameters and hence, more accurate prediction of the underlying GRN compared to when using the conventional Gaussian approximation (GA) filters ignoring the missing data points.

[1]  Sirish L. Shah,et al.  Optimal H2 filtering with random sensor delay, multiple packet dropout and uncertain observations , 2007, Int. J. Control.

[2]  Duangdao Wichadakul,et al.  C-mii: a tool for plant miRNA and target identification , 2012, BMC Genomics.

[3]  Juan Li,et al.  Inferring Transcriptional Networks Using Prior Biological Knowledge and Constrained State-Space Models , 2010, Learning and Inference in Computational Systems Biology.

[4]  D. Floreano,et al.  Revealing strengths and weaknesses of methods for gene network inference , 2010, Proceedings of the National Academy of Sciences.

[5]  Nan Xiao,et al.  Optimal Filtering for Systems With Multiple Packet Dropouts , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  Carsten Peterson,et al.  Random Boolean network models and the yeast transcriptional network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Jaakko Astola,et al.  Fast Iterative Gene Clustering Based on Information Theoretic Criteria for Selecting the Cluster Structure , 2004, J. Comput. Biol..

[8]  Gustavo Stolovitzky,et al.  Lessons from the DREAM2 Challenges , 2009, Annals of the New York Academy of Sciences.

[9]  A. Califano,et al.  Dialogue on Reverse‐Engineering Assessment and Methods , 2007, Annals of the New York Academy of Sciences.

[10]  Dario Floreano,et al.  GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods , 2011, Bioinform..

[11]  Kun He,et al.  An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors , 2015, Molecular biology and evolution.

[12]  Ankush Mittal,et al.  Model gene network by semi-fixed Bayesian network , 2006, Expert Syst. Appl..

[13]  Hazem N. Nounou,et al.  Reverse Engineering Sparse Gene Regulatory Networks Using Cubature Kalman Filter and Compressed Sensing , 2013, Adv. Bioinformatics.

[14]  Satoru Miyano,et al.  Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models , 2008, Bioinform..

[15]  E. Dougherty,et al.  Inferring Connectivity of Genetic Regulatory Networks Using Information-Theoretic Criteria , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[16]  Christine Nardini,et al.  An S-System Parameter Estimation Method (SPEM) for Biological Networks , 2012, J. Comput. Biol..

[17]  M. Johnston,et al.  Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae , 1994, Molecular and cellular biology.

[18]  D. Bernardo,et al.  A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches , 2009, Cell.

[19]  Brian Godsey,et al.  Improved Inference of Gene Regulatory Networks through Integrated Bayesian Clustering and Dynamic Modeling of Time-Course Expression Data , 2013, PloS one.

[20]  N. D. Clarke,et al.  Correction: Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges , 2010, PLoS ONE.

[21]  J. Nielsen,et al.  Metabolic Engineering of Saccharomyces cerevisiae , 2000, Microbiology and Molecular Biology Reviews.

[22]  Harri Lähdesmäki,et al.  Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics , 2009, Bioinform..

[23]  Ming Xin,et al.  High-degree cubature Kalman filter , 2013, Autom..

[24]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[25]  J. Astola,et al.  Fast Iterative Gene Clustering Based on Information Theoretic Criteria for Selecting the Cluster Structure , 2004, J. Comput. Biol..

[26]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[27]  Michael S. Samoilov,et al.  Inference of gene regulatory networks from genome-wide knockout fitness data , 2012, Bioinform..

[28]  A. Bittner,et al.  Comparison of RNA-Seq and Microarray in Transcriptome Profiling of Activated T Cells , 2014, PloS one.

[29]  Yufeng Wang,et al.  Bayesian Inference of Genetic Regulatory Networks from Time Series Microarray Data Using Dynamic Bayesian Networks , 2007, J. Multim..

[30]  Prospero C. Naval,et al.  Parameter estimation using Simulated Annealing for S-system models of biochemical networks , 2007, Bioinform..

[31]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[32]  Iqbal Gondal,et al.  How to Improve Postgenomic Knowledge Discovery Using Imputation , 2009, EURASIP J. Bioinform. Syst. Biol..

[33]  D. Lohr,et al.  Transcriptional regulation in the yeast GAL gene family: a complex genetic network , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  Zalmiyah Zakaria,et al.  A review on the computational approaches for gene regulatory network construction , 2014, Comput. Biol. Medicine.

[35]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[36]  A. Carvalho,et al.  Mechanisms and role of microRNA deregulation in cancer onset and progression , 2011, Genetics and molecular biology.

[37]  Edward R. Dougherty,et al.  From Boolean to probabilistic Boolean networks as models of genetic regulatory networks , 2002, Proc. IEEE.

[38]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[39]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[40]  Sunitha Kogenaru,et al.  RNA-seq and microarray complement each other in transcriptome profiling , 2012, BMC Genomics.

[41]  Zidong Wang,et al.  An Extended Kalman Filtering Approach to Modeling Nonlinear Dynamic Gene Regulatory Networks via Short Gene Expression Time Series , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[42]  Fenglei Jiang,et al.  Rapid GAL Gene Switch of Saccharomyces cerevisiae Depends on Nuclear Gal3, Not Nucleocytoplasmic Trafficking of Gal3 and Gal80 , 2011, Genetics.

[43]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[44]  Michael Hecker,et al.  Gene regulatory network inference: Data integration in dynamic models - A review , 2009, Biosyst..

[45]  Michael J. Grimble,et al.  Adaptive systems for signal processing, communications and control , 2001 .

[46]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[47]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[48]  Dario Floreano,et al.  Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods , 2009, J. Comput. Biol..

[49]  Aurora Hermoso-Carazo,et al.  Unscented filtering algorithm using two-step randomly delayed observations in nonlinear systems , 2009 .

[50]  Jaakko Astola,et al.  Inference of Gene Regulatory Networks Based on a Universal Minimum Description Length , 2008, EURASIP J. Bioinform. Syst. Biol..

[51]  N. D. Clarke,et al.  Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges , 2010, PloS one.

[52]  Karsten Rippe,et al.  Statistical–mechanical lattice models for protein–DNA binding in chromatin , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  Raymond E. Moellering,et al.  Direct inhibition of the NOTCH transcription factor complex , 2010, Nature.

[54]  Nedumparambathmarath Vijesh,et al.  Modeling of gene regulatory networks: A review , 2013 .

[55]  K. Aihara,et al.  Chaos and asymptotical stability in discrete-time neural networks , 1997, chao-dyn/9701020.

[56]  B. Haibe-Kains,et al.  Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks , 2014, Front. Cell Dev. Biol..

[57]  W. Lambert,et al.  Novel multistranded, alternative, plasmid and helical transitional DNA and RNA microarrays: implications for therapeutics. , 2009, Pharmacogenomics.