Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex.

Macaque electrophysiology has revealed neurons responsive to number in lateral (LIP) and ventral (VIP) intraparietal areas. Recently, fMRI pattern recognition revealed information discriminative of individual numbers in human parietal cortex but without precisely localizing the relevant sites or testing for subregions with different response profiles. Here, we defined the human functional equivalents of LIP (feLIP) and VIP (feVIP) using neurophysiologically motivated localizers. We applied multivariate pattern recognition to investigate whether both regions represent numerical information and whether number codes are position specific or invariant. In a delayed number comparison paradigm with laterally presented numerosities, parietal cortex discriminated between numerosities better than early visual cortex, and discrimination generalized across hemifields in parietal, but not early visual cortex. Activation patterns in the 2 parietal regions of interest did not differ in the coding of position-specific or position-independent number information, but in the expression of a numerical distance effect which was more pronounced in feLIP. Thus, the representation of number in parietal cortex is at least partially position invariant. Both feLIP and feVIP contain information about individual numerosities in humans, but feLIP hosts a coarser representation of numerosity than feVIP, compatible with either broader tuning or a summation code.

[1]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[2]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[3]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[4]  T. Verguts,et al.  Dissecting the symbolic distance effect: Comparison and priming effects in numerical and nonnumerical orders , 2008, Psychonomic bulletin & review.

[5]  Andreas Nieder,et al.  A parieto-frontal network for visual numerical information in the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Sabine Kastner,et al.  Representation of Eye Movements and Stimulus Motion in Topographically Organized Areas of Human Posterior Parietal Cortex , 2008, The Journal of Neuroscience.

[7]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[8]  Dwight J. Kravitz,et al.  High-level visual object representations are constrained by position. , 2010, Cerebral cortex.

[9]  E. Spelke,et al.  Language and Conceptual Development series Core systems of number , 2004 .

[10]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[11]  J. Haynes Brain Reading: Decoding Mental States From Brain Activity In Humans , 2011 .

[12]  J. Cantlon,et al.  Shared System for Ordering Small and Large Numbers in Monkeys and Humans , 2006, Psychological science.

[13]  Wim Fias,et al.  Stages of Nonsymbolic Number Processing in Occipitoparietal Cortex Disentangled by fMRI Adaptation , 2011, The Journal of Neuroscience.

[14]  Stanislas Dehaene,et al.  Development of Elementary Numerical Abilities: A Neuronal Model , 1993, Journal of Cognitive Neuroscience.

[15]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[16]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[17]  Andreas Nieder,et al.  Temporal and Spatial Enumeration Processes in the Primate Parietal Cortex , 2006, Science.

[18]  Justin Halberda,et al.  Individual differences in non-verbal number acuity correlate with maths achievement , 2008, Nature.

[19]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[20]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[21]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[22]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[23]  Wim Fias,et al.  Salience maps in parietal cortex: Imaging and computational modeling , 2010, NeuroImage.

[24]  Marco Zorzi,et al.  Emergence of a 'visual number sense' in hierarchical generative models , 2012, Nature Neuroscience.

[25]  A. Pouget,et al.  Reference frames for representing visual and tactile locations in parietal cortex , 2005, Nature Neuroscience.

[26]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[27]  Daniel Ansari,et al.  Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study , 2010, NeuroImage.

[28]  Stephen F. Goodwin,et al.  Sexual Dimorphism: Can You Smell the Difference? , 2008, Current Biology.

[29]  Daniel Ansari,et al.  The Evolution of Numerical Cognition: From Number Neurons to Linguistic Quantifiers , 2008, The Journal of Neuroscience.

[30]  Y. Miyashita,et al.  Functional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks Comparison of Cortical Eye Fields with Humans , 2004, Neuron.

[31]  E. Brannon,et al.  Monotonic Coding of Numerosity in Macaque Lateral Intraparietal Area , 2007, PLoS biology.

[32]  Frank Bremmer,et al.  ã Federation of European Neuroscience Societies Heading encoding in the macaque ventral intraparietal area (VIP) , 2022 .

[33]  D. Burr,et al.  A Visual Sense of Number , 2007, Current Biology.

[34]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[35]  Wim Fias,et al.  Number Processing Pathways in Human Parietal Cortex , 2009, Cerebral cortex.

[36]  Nancy Kanwisher,et al.  The distribution of category and location information across object-selective regions in human visual cortex , 2008, Proceedings of the National Academy of Sciences.

[37]  Bertrand Thirion,et al.  Deciphering Cortical Number Coding from Human Brain Activity Patterns , 2009, Current Biology.

[38]  G. Denes,et al.  A specific deficit for numbers in a case of dense acalculia. , 1991, Brain : a journal of neurology.

[39]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[40]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[41]  Elizabeth M. Brannon,et al.  Beyond the number domain , 2009, Trends in Cognitive Sciences.

[42]  D. Ansari Effects of development and enculturation on number representation in the brain , 2008, Nature Reviews Neuroscience.

[43]  D. LeBihan,et al.  Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task , 2001, NeuroImage.

[44]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[45]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[46]  Wim Fias,et al.  Representation of Number in Animals and Humans: A Neural Model , 2004, Journal of Cognitive Neuroscience.

[47]  F. Kingdom,et al.  A common visual metric for approximate number and density , 2011, Proceedings of the National Academy of Sciences.

[48]  David J. Freedman,et al.  Distinct Encoding of Spatial and Nonspatial Visual Information in Parietal Cortex , 2009, The Journal of Neuroscience.

[49]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Pinsk,et al.  Visuotopic Organization of Macaque Posterior Parietal Cortex: A Functional Magnetic Resonance Imaging Study , 2011, The Journal of Neuroscience.

[51]  ROBERT S. MOYER,et al.  Time required for Judgements of Numerical Inequality , 1967, Nature.

[52]  Brian Butterworth,et al.  Discrete and analogue quantity processing in the parietal lobe: a functional MRI study. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[54]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.