An oscillatory correlation model of auditory streaming

We present a neurocomputational model for auditory streaming, which is a prominent phenomenon of auditory scene analysis. The proposed model represents auditory scene analysis by oscillatory correlation, where a perceptual stream corresponds to a synchronized assembly of neural oscillators and different streams correspond to desynchronized oscillator assemblies. The underlying neural architecture is a two-dimensional network of relaxation oscillators with lateral excitation and global inhibition, where one dimension represents time and another dimension frequency. By employing dynamic connections along the frequency dimension and a random element in global inhibition, the proposed model produces a temporal coherence boundary and a fissure boundary that closely match those from the psychophysical data of auditory streaming. Several issues are discussed, including how to represent physical time and how to relate shifting synchronization to auditory attention.

[1]  P. S. Lindsey,et al.  Fast numerical integration of relaxation oscillator networks based on singular limit solutions , 1996 .

[2]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[3]  Stephen McAdams,et al.  Hearing Musical Streams , 2008 .

[4]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[5]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[6]  Guy J. Brown,et al.  Temporal synchronization in a neural oscillator model of primitive auditory stream segregation , 1998 .

[7]  A. Bregman,et al.  Primary auditory stream segregation and perception of order in rapid sequences of tones. , 1971, Journal of experimental psychology.

[8]  Fabio Cavallini,et al.  Fitting a Logistic Curve to Data , 1993 .

[9]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[10]  Michael J. Denham,et al.  A Model of Auditory Streaming , 1995, NIPS.

[11]  M. R. Jones,et al.  Evidence for rhythmic attention. , 1981, Journal of experimental psychology. Human perception and performance.

[12]  R Hari,et al.  Evidence for cortical origin of the 40 Hz auditory evoked response in man. , 1987, Electroencephalography and clinical neurophysiology.

[13]  G. A. Miller,et al.  The Trill Threshold , 1950 .

[14]  H. Scheich,et al.  Stimulus-related gamma oscillations in primate auditory cortex. , 2002, Journal of neurophysiology.

[15]  D. Asdourian,et al.  Effects of thalamic and limbic system lesions on self-stimulation. , 1966, Journal of comparative and physiological psychology.

[16]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[17]  R. Meddis,et al.  A Computer Model of Auditory Stream Segregation , 1991, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[18]  Johan Grasman,et al.  Relaxation Oscillations , 2009, Encyclopedia of Complexity and Systems Science.

[19]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[20]  Guy J. Brown,et al.  Neural and Perceptual Modeling , 2006 .

[21]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[22]  F. Bloom Principles of Neural Science, 3rd ed , 1993 .

[23]  A. de Cheveigné Multiple F0 estimation , 2006 .

[24]  Jean Stein,et al.  Psychology: Science, behavior, and life , 1988 .

[25]  J A Simmons,et al.  A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: the spectrogram correlation and transformation receiver. , 1993, The Journal of the Acoustical Society of America.

[26]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[27]  DeLiang Wang,et al.  Primitive Auditory Segregation Based on Oscillatory Correlation , 1996, Cogn. Sci..

[28]  A. Bregman Auditory Scene Analysis , 2008 .

[29]  Guy J. Brown,et al.  Separation of speech from interfering sounds based on oscillatory correlation , 1999, IEEE Trans. Neural Networks.

[30]  L A JEFFRESS,et al.  A place theory of sound localization. , 1948, Journal of comparative and physiological psychology.

[31]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[32]  Michael James. Norris Assessment and extension of Wang's oscillatory model of auditory stream segregation , 2003 .

[33]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[35]  E. C. Cmm,et al.  on the Recognition of Speech, with , 2008 .

[36]  L. V. Noorden Temporal coherence in the perception of tone sequences , 1975 .

[37]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[38]  T. Anderson,et al.  Binaural and spatial hearing in real and virtual environments , 1997 .

[39]  D. Barth,et al.  Thalamic modulation of high-frequency oscillating potentials in auditory cortex , 1996, Nature.

[40]  Ch. von der Malsburg,et al.  A neural cocktail-party processor , 1986, Biological Cybernetics.

[41]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[42]  DeLiang Wang,et al.  Auditory Segmentation Based on Onset and Offset Analysis , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[43]  R. Patterson,et al.  Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. , 1995, The Journal of the Acoustical Society of America.

[44]  D. Wang,et al.  The time dimension for scene analysis , 2005, IEEE Transactions on Neural Networks.

[45]  M. Tanaka,et al.  Further evidence for the specific involvement of the flocculus in the vertical vestibulo-ocular reflex (VOR). , 1996, Progress in brain research.

[46]  H. Scheich,et al.  Auditory Cortex Stimulus-Related Gamma Oscillations in Primate , 2002 .

[47]  R Meddis,et al.  Computer simulation of auditory stream segregation in alternating-tone sequences. , 1996, The Journal of the Acoustical Society of America.

[48]  K. D. Singh,et al.  Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Roger M. Carpenter,et al.  Auditory Perception: A New Analysis and Synthesis , 1999 .

[50]  DeLiang Wang,et al.  Relaxation Oscillators and Networks , 1999 .

[51]  E. Large,et al.  The dynamics of attending: How people track time-varying events. , 1999 .

[52]  R J Jagacinski,et al.  Tests of attentional flexibility in listening to polyrhythmic patterns. , 1995, Journal of experimental psychology. Human perception and performance.

[53]  P. Maldonado,et al.  Neuronal assembly dynamics in the rat auditory cortex during reorganization induced by intracortical microstimulation , 1996, Experimental Brain Research.

[54]  H. Pashler The Psychology of Attention , 1997 .

[55]  DeLiang Wang,et al.  Temporal pattern processing , 1998 .

[56]  Richard R. Fay,et al.  The Mammalian Auditory Pathway: Neurophysiology , 1992, Springer Handbook of Auditory Research.

[57]  DeLiang Wang,et al.  Locally excitatory globally inhibitory oscillator networks , 1995, IEEE Transactions on Neural Networks.

[58]  Viktor K. Jirsa,et al.  Integration and segregation in auditory streaming , 2005 .

[59]  Leslie S. Smith Sound segmentation using onsets and offsets , 1994 .

[60]  Deliang Wang,et al.  Global competition and local cooperation in a network of neural oscillators , 1995 .

[61]  Guy J. Brown,et al.  Computational auditory scene analysis , 1994, Comput. Speech Lang..

[62]  DeLiang Wang,et al.  Emergent synchrony in locally coupled neural oscillators , 1995, IEEE Trans. Neural Networks.

[63]  E. Pöppel,et al.  Auditory evoked potentials indicate the loss of neuronal oscillations during general anaesthesia , 2004, Naturwissenschaften.

[64]  S. Makeig,et al.  A 40-Hz auditory potential recorded from the human scalp. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Ray Meddis,et al.  Computer simulation of auditory stream segregation in alternating‐tone sequences , 1993 .

[66]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[67]  William M. Baird A Cortical Model of Cognitive 40 Hz Attentional Streams, Rhythmic Expectation, and Auditory Stream S , 1997 .

[68]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[69]  M. Berger,et al.  High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. , 2005, Journal of neurophysiology.

[70]  Alan R. Palmer,et al.  Spectrotemporal Receptive Field Properties of Single Units in the Primary, Dorsocaudal and Ventrorostral Auditory Cortex of the Guinea Pig , 2002, Audiology and Neurotology.

[71]  R. Llinás,et al.  Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Albert S. Bregman Auditory scene analysis as a system , 2008 .

[73]  J. Fritz,et al.  Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex , 2003, Nature Neuroscience.

[74]  J. Licklider,et al.  A duplex theory of pitch perception , 1951, Experientia.

[75]  Guy J. Brown,et al.  Computational Auditory Scene Analysis: Principles, Algorithms, and Applications , 2006 .

[76]  Guy J. Brown,et al.  A computational model of auditory selective attention , 2004, IEEE Transactions on Neural Networks.

[77]  J. Pickles An Introduction to the Physiology of Hearing , 1982 .

[78]  Jean Rouat,et al.  Monophonic sound source separation with an unsupervised network of spiking neurones , 2007, Neurocomputing.

[79]  Christoph E Schreiner,et al.  Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. , 2003, Journal of neurophysiology.

[80]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.