Connecting the dots: Semi-analytical and random walk numerical solutions of the diffusion-reaction equation with stochastic initial conditions

We study a system with bimolecular irreversible kinetic reaction A+B->@A where the underlying transport of reactants is governed by diffusion, and the local reaction term is given by the law of mass action. We consider the case where the initial concentrations are given in terms of an average and a white noise perturbation. Our goal is to solve the diffusion-reaction equation which governs the system, and we tackle it with both analytical and numerical approaches. To obtain an analytical solution, we develop the equations of moments and solve them approximately. To obtain a numerical solution, we develop a grid-less Monte Carlo particle tracking approach, where diffusion is modeled by a random walk of the particles, and reaction is modeled by annihilation of particles. The probability of annihilation is derived analytically from the particles' co-location probability. We rigorously derive the relationship between the initial number of particles in the system and the amplitude of white noise represented by that number. This enables us to compare the particle simulations and the approximate analytical solution and offer an explanation of the late time discrepancies.

[1]  M. Schweizer,et al.  Classical solutions to reaction-diffusion systems for hedging problems with interacting Ito and point processes , 2005, math/0505208.

[2]  Yacov Salomon,et al.  Effects of asymmetric dispersal on the coexistence of competing species. , 2010, Ecology letters.

[3]  Charles S. Peskin,et al.  A Monte Carlo method for scalar reaction diffusion equations , 1986 .

[4]  P. T. Wolde,et al.  Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. , 2005 .

[5]  R Kopelman,et al.  Observation of laser speckle effects and nonclassical kinetics in an elementary chemical reaction. , 2000, Physical review letters.

[6]  John R. Bourne,et al.  Mixing and the Selectivity of Chemical Reactions , 2003 .

[7]  Felipe P. J. de Barros,et al.  Flow topology and scalar mixing in spatially heterogeneous flow fields , 2012 .

[8]  A. A. Ovchinnikov,et al.  Role of density fluctuations in bimolecular reaction kinetics , 1978 .

[9]  A. Y. Klimenko,et al.  Mixing, entropy and competition , 2012, 1305.1383.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[12]  Frank Schweitzer,et al.  Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences , 2003 .

[13]  Scott B. Baden,et al.  Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces , 2008, SIAM J. Sci. Comput..

[14]  Mary A. Fields Modeling Large Scale Troop Movement Using Reaction Diffusion Equations , 1993 .

[15]  Alexandre M Tartakovsky,et al.  Langevin model for reactive transport in porous media. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Jeroen S. van Zon,et al.  Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. , 2005, Physical review letters.

[17]  Karl-Gustaf Löfgren,et al.  Renewable Resources and Economic Sustainability: A Dynamic Analysis with Heterogeneous Time Preferences , 2000 .

[18]  X. Sanchez‐Vila,et al.  Optimal reconstruction of concentrations, gradients and reaction rates from particle distributions. , 2011, Journal of contaminant hydrology.

[19]  Diogo Bolster,et al.  Anomalous kinetics in diffusion limited reactions linked to non-Gaussian concentration probability distribution function. , 2011, The Journal of chemical physics.

[20]  David A. Benson,et al.  Modeling bimolecular reactions and transport in porous media via particle tracking , 2013 .

[21]  M. Doi Stochastic theory of diffusion-controlled reaction , 1976 .

[22]  Stephen A. Rice Diffusion-limited reactions , 1985 .

[23]  Shlesinger,et al.  Breakdown of Ovchinnikov-Zeldovich Segregation in the A+B-->0 Reaction under Lévy Mixing. , 1996, Physical review letters.

[24]  Raoul Kopelman,et al.  Nonclassical kinetics of an elementary A+B-->C reaction-diffusion system showing effects of a speckled initial reactant distribution and eventual self-segregation: experiments. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  David A. Benson,et al.  Simulation of chemical reaction via particle tracking: Diffusion‐limited versus thermodynamic rate‐limited regimes , 2008 .

[26]  Jean-Raynald de Dreuzy,et al.  Non-Fickian mixing: Temporal evolution of the scalar dissipation rate in heterogeneous porous media , 2010 .

[27]  Vivek Kapoor,et al.  Experimental study of bimolecular reaction kinetics in porous media. , 2000 .

[28]  Brian Berkowitz,et al.  Modeling bimolecular reactions and transport in porous media , 2008 .

[29]  Kagan Tuncay,et al.  Scale dependence of reaction rates in porous media , 2006 .

[30]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[31]  Igor M. Sokolov,et al.  FLUCTUATION-DOMINATED A + B 0 KINETICS UNDER SHORT-RANGED INTERPARTICLE INTERACTIONS , 1996 .

[32]  Jesús Carrera,et al.  Non-Fickian mixing: temporal evolution of the scalar dissipation rate in porous media , 2010 .

[33]  C. Harvey,et al.  Reactive transport in porous media: a comparison of model prediction with laboratory visualization. , 2002, Environmental science & technology.

[34]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[35]  L. Segel,et al.  Law of mass action , 1992, Nature.

[36]  F. Wilczek,et al.  Particle–antiparticle annihilation in diffusive motion , 1983 .

[37]  Alexandre M. Tartakovsky,et al.  Incomplete mixing and reactions with fractional dispersion , 2012 .

[38]  D. Benson,et al.  Particle tracking and the diffusion‐reaction equation , 2013 .

[39]  Coleman duP. Donaldson,et al.  Effect of inhomogeneous mixing on atmospheric photochemical reactions , 1972 .

[40]  Olivier Bour,et al.  Persistence of incomplete mixing: a key to anomalous transport. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  S. Havlin,et al.  Diffusion in disordered media , 1991 .

[42]  J. Kärger Modern Aspects of Diffusion-Controlled Reactions. Cooperative Phenomena in Bimolecular Processes , 1999 .

[43]  Alexandre M. Tartakovsky,et al.  Effect of spatial concentration fluctuations on effective kinetics in diffusion‐reaction systems , 2012 .

[44]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[45]  Daniel M Tartakovsky,et al.  Stochastic langevin model for flow and transport in porous media. , 2008, Physical review letters.

[46]  Diogo Bolster,et al.  Anomalous mixing and reaction induced by superdiffusive nonlocal transport. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Diogo Bolster,et al.  Visualization of mixing processes in a heterogeneous sand box aquifer. , 2012, Environmental science & technology.

[48]  W. Kinzelbach,et al.  The Random Walk Method in Pollutant Transport Simulation , 1988 .

[49]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[50]  Sidney Redner,et al.  Scaling approach for the kinetics of recombination processes , 1984 .

[51]  T. A. Prickett,et al.  A "random-walk" solute transport model for selected groundwater quality evaluations , 1981 .

[52]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[53]  S. Jonathan Chapman,et al.  Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions , 2010, SIAM J. Appl. Math..

[54]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[55]  David Bernstein,et al.  Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  André A. Keller,et al.  Reaction-diffusion systems in natural sciences and new technology transfer , 2012 .

[57]  Kopelman,et al.  Nonclassical kinetics in three dimensions: Simulations of elementary A+B and A+A reactions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  Diogo Bolster,et al.  Mixing in confined stratified aquifers. , 2011, Journal of contaminant hydrology.

[59]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[60]  V. Méndez,et al.  Reaction-diffusion waves of advance in the transition to agricultural economics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  D. Gillespie The chemical Langevin equation , 2000 .

[62]  S. Isaacson A convergent reaction-diffusion master equation. , 2012, Journal of Chemical Physics.

[63]  B. Chopard,et al.  Microscopic Study of the Properties of the Reaction Front in an A + B???C Reaction-Diffusion Process , 1991 .

[64]  Sonia M. Kreidenweis,et al.  Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles , 2009 .

[65]  C. Pozrikidis Numerical computation in science and engineering , 1998 .

[66]  Jesús Carrera,et al.  Multicomponent reactive transport in multicontinuum media , 2009 .

[67]  Redner,et al.  Fluctuation-dominated kinetics in diffusion-controlled reactions. , 1985, Physical review. A, General physics.

[68]  Charalambos Papelis,et al.  Particle-tracking simulation of fractional diffusion-reaction processes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[70]  Wolfgang Linert,et al.  The Law of Mass Action , 2001 .

[71]  Jichang Wang Stirring-Induced Oscillations in an Excitable Chemical System with Inhomogeneous Reaction Dynamics , 2003 .

[72]  J C Hill,et al.  Homogeneous Turbulent Mixing with Chemical Reaction , 1976 .

[73]  Patrick Patrick Anderson,et al.  An efficient approach for eigenmode analysis of transient distributive mixing by the mapping method , 2012 .

[74]  Diogo Bolster,et al.  The effect of initial spatial correlations on late time kinetics of bimolecular irreversible reactions , 2012 .

[75]  D. E. Dougherty,et al.  Particle-grid methods for reacting flows in porous media with application to Fisher's equation , 1992 .