Photonic Block Copolymer Films Swollen with an Ionic Liquid

Nonvolatile solvent swollen 1D periodic films were fabricated from lamellae-forming block copolymers with medium molecular weight by infiltrating an ionic liquid. A mixture of imidazole and imidazolium bis(trifluoromethanesulfonyl)imide as a room temperature ionic liquid was added after spin-coating of thin films of polystyrene-b-poly(2-vinylpyridine) (PS–P2VP) block copolymers having an approximately 50/50 composition to create photonic films reflecting in the visible regime. Under normal conditions of temperature and humidity, the films maintained their photonic properties for more than 100 days without perceptible change, stemming from the nonvolatility of the ionic liquid. Transmission electron microscopy revealed the selective swelling of the P2VP nanodomains by the IL and ultrasmall angle X-ray scattering measurements provided quantitative nanostructure information on the periodicities of the films. The wavelength of reflected light from photonic films was tunable by using different molecular weight...

[1]  R. Grubbs,et al.  Synthesis of isocyanate-based brush block copolymers and their rapid self-assembly to infrared-reflecting photonic crystals. , 2012, Journal of the American Chemical Society.

[2]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[3]  Joy Cheng,et al.  Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography , 2001 .

[4]  Walter J. Schrenk,et al.  Physical optics of iridescent multilayered plastic films , 1969 .

[5]  M. Thelakkat,et al.  Crystalline-crystalline donor-acceptor block copolymers. , 2008, Angewandte Chemie.

[6]  G. Tew,et al.  Zwitterionic polymersomes in an ionic liquid: room temperature TEM characterization. , 2011, Biomacromolecules.

[7]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.

[8]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[9]  Timothy P. Lodge,et al.  A Unique Platform for Materials Design , 2008, Science.

[10]  Jongseung Yoon,et al.  Enabling nanotechnology with self assembled block copolymer patterns , 2003 .

[11]  E. Thomas,et al.  Broad-wavelength-range chemically tunable block-copolymer photonic gels. , 2007, Nature materials.

[12]  T. Lodge,et al.  Self-assembly of block copolymer micelles in an ionic liquid. , 2006, Journal of the American Chemical Society.

[13]  Martin Maldovan,et al.  25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons , 2013, Advanced materials.

[14]  Y. Fink,et al.  One-dimensionally periodic dielectric reflectors from self-assembled block copolymer-homopolymer blends , 1999 .

[15]  E. W. Edwards,et al.  Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures , 2005, Science.

[16]  Todd Emrick,et al.  Self-directed self-assembly of nanoparticle/copolymer mixtures , 2005, Nature.

[17]  Yan Xia,et al.  Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. , 2009, Journal of the American Chemical Society.

[18]  Masayoshi Watanabe,et al.  Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities , 2008 .

[19]  Edwin L. Thomas,et al.  Mechanochromic Photonic Gels , 2013, Advanced materials.

[20]  E. Thomas,et al.  Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors , 1999, Science.

[21]  Marc A. Hillmyer,et al.  Mesoporous Polystyrene Monoliths , 2001 .

[22]  R. Grubbs,et al.  Self-assembly of symmetric brush diblock copolymers. , 2013, ACS nano.

[23]  K. Kudo,et al.  Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes , 2003 .

[24]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[25]  Augustine Urbas,et al.  Bicontinuous Cubic Block Copolymer Photonic Crystals , 2002 .

[26]  M. Torkkeli,et al.  Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching , 2004, Nature materials.

[27]  Craig J. Hawker,et al.  Block Copolymer Lithography: Merging “Bottom-Up” with “Top-Down” Processes , 2005 .

[28]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[29]  Megan L. Hoarfrost,et al.  Effect of an Ionic Liquid Solvent on the Phase Behavior of Block Copolymers , 2010 .

[30]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[31]  U. Wiesner,et al.  A bicontinuous double gyroid hybrid solar cell. , 2009, Nano letters.

[32]  N. Bowden,et al.  Synthesis of high molecular weight comb block copolymers and their assembly into ordered morphologies in the solid state. , 2007, Journal of the American Chemical Society.

[33]  J. Rzayev,et al.  Large pore size nanoporous materials from the self-assembly of asymmetric bottlebrush block copolymers. , 2011, Nano letters.

[34]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[35]  T. Hashimoto,et al.  Ordered structure in blends of block copolymers. 1. Miscibility criterion for lamellar block copolymers , 1993 .

[36]  Megan L. Hoarfrost,et al.  Conductivity Scaling Relationships for Nanostructured Block Copolymer/Ionic Liquid Membranes. , 2012, ACS macro letters.

[37]  T. Kanai,et al.  Swelling of Gel-Immobilized Colloidal Photonic Crystals in Ionic Liquids , 2011 .

[38]  Jae-Hwang Lee,et al.  Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. , 2012, ACS nano.

[39]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[40]  T. Lodge,et al.  Micellization of PS-PMMA Diblock Copolymers in an Ionic Liquid , 2007 .

[41]  Y. Matsushita,et al.  Chain Localization and Interfacial Thickness in Microphase-Separated Structures of Block Copolymers with Variable Composition Distributions , 2006 .

[42]  Erin M. Lennon,et al.  Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays , 2008, Science.

[43]  S. Satija,et al.  Neutron Reflection Studies on Segment Distribution of Block Chains in Lamellar Microphase-Separated Structures , 1997 .

[44]  T. Emrick,et al.  Donor−Acceptor Poly(thiophene-block-perylene diimide) Copolymers: Synthesis and Solar Cell Fabrication , 2009 .

[45]  T. Lodge,et al.  Lyotropic Phase Behavior of Polybutadiene−Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids , 2008 .

[46]  Augustine Urbas,et al.  Tunable Block Copolymer/Homopolymer Photonic Crystals , 2000 .

[47]  H. Asai,et al.  Fine structures of styrene-butadiene block copolymer films cast from toluene solution , 1969 .

[48]  J. Virgili Phase Behavior of Polystyrene-block-poly(2-vinylpyridine) Copolymers in a Selective Ionic Liquid Solvent , 2009 .

[49]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[50]  Edwin L. Thomas,et al.  Full color stop bands in hybrid organic/inorganic block copolymer photonic gels by swelling-freezing. , 2009, Journal of the American Chemical Society.

[51]  N. Balsara,et al.  Ionic Liquid Distribution in Ordered Block Copolymer Solutions , 2010 .

[52]  R. Segalman,et al.  Block Copolymers for Organic Optoelectronics , 2009 .

[53]  Nikos Hadjichristidis,et al.  Polymer‐Based Photonic Crystals , 2001 .

[54]  Tamar L Greaves,et al.  Protic ionic liquids: properties and applications. , 2008, Chemical reviews.

[55]  N. Tessler,et al.  All-polymer optoelectronic devices , 1999, Science.

[56]  T. Lodge,et al.  Phase behavior and ionic conductivity of concentrated solutions of polystyrene-poly(ethylene oxide) diblock copolymers in an ionic liquid. , 2009, ACS applied materials & interfaces.

[57]  Katsuaki Mori,et al.  Molecular weight dependence of lamellar domain spacing of diblock copolymers in bulk , 1990 .

[58]  F. Bates,et al.  Bridge to loop transition in a shear aligned lamellae forming heptablock copolymer , 2004 .

[59]  F. Bates,et al.  Unifying Weak- and Strong-Segregation Block Copolymer Theories , 1996 .

[60]  J. Rzayev Synthesis of Polystyrene−Polylactide Bottlebrush Block Copolymers and Their Melt Self-Assembly into Large Domain Nanostructures , 2009 .

[61]  H. Kawai,et al.  Domain-Boundary Structure of Styrene-Isoprene Block Copolymer Films Cast from Solutions. 5. Molecular-Weight Dependence of Spherical Microdomains , 1980 .

[62]  H. Watanabe Viscoelasticity and dynamics of entangled polymers , 1999 .

[63]  Marc A. Hillmyer,et al.  Polydispersity and block copolymer self-assembly , 2008 .

[64]  Thomas P. Russell,et al.  Nanoporous Membranes with Ultrahigh Selectivity and Flux for the Filtration of Viruses , 2006 .

[65]  Sol M Gruner,et al.  Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly , 2008, Science.

[66]  E. Thomas,et al.  Defects, Solvent Quality, and Photonic Response in Lamellar Block Copolymer Gels , 2014 .

[67]  Nan Luo,et al.  Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature. , 2012, Chemical communications.

[68]  Megan L. Hoarfrost,et al.  Ionic Conductivity of Nanostructured Block Copolymer/Ionic Liquid Membranes , 2010 .

[69]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[70]  E. Thomas,et al.  Metallodielectric Photonic Crystals Based on Diblock Copolymers , 2001 .

[71]  R. Grubbs,et al.  Precisely tunable photonic crystals from rapidly self-assembling brush block copolymer blends. , 2012, Angewandte Chemie.