PROBE - A multicriteria decision support system for portfolio robustness evaluation

This paper addresses the problem of selecting a robust portfolio of projects in the context of limited resources, multiple criteria, different project interactions and several types of uncertainty. A portfolio of projects is considered an undoubtedly robust choice if for a given uncertainty domain that affects the costs and/or the benefits of the projects there is no other portfolio that does not cost more and simultaneously may provide more overall benefit. We present a new decision support system, PROBE (Portfolio Robustness Evaluation), and the algorithms it implements. PROBE identifies all efficient portfolios and depicts the respective Pareto frontier within a given portfolio cost range, and permits users to analyze, in depth, the robustness of selecting a proposed portfolio. The robustness evaluation starts by identifying competitor portfolios to the proposed portfolio, its similarities and differences in project composition to its competitors, and the regret a decision-maker may have by selecting the proposed portfolio instead of a competitor.

[1]  Alec Morton,et al.  Portfolio Decision Analysis for Population Health , 2011 .

[2]  Carlos A. Bana e Costa,et al.  A career choice problem: An example of how to use MACBETH to build a quantitative value model based on qualitative value judgments , 2004, Eur. J. Oper. Res..

[3]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[4]  R. Cooper,et al.  New Product Portfolio Management : Practices and Performance , 1999 .

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Kamal Golabi,et al.  Selecting a portfolio of nonhomogeneous R&D proposals☆ , 1985 .

[7]  James E. Smith,et al.  On the Choice of Baselines in Multiattribute Portfolio Analysis: A Cautionary Note , 2009, Decis. Anal..

[8]  D. N. Kleinmuntz Advances in Decision Analysis: Resource Allocation Decisions , 2007 .

[9]  Ahti Salo,et al.  Exploring Causal Relationships in an Innovation Program with Robust Portfolio Modeling , 2006 .

[10]  David J. Weiss,et al.  SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement , 2008 .

[11]  Detlof von Winterfeldt,et al.  Advances in decision analysis : from foundations to applications , 2007 .

[12]  C E Kleinmuntz,et al.  A strategic approach to allocating capital in healthcare organizations. , 1999, Healthcare financial management : journal of the Healthcare Financial Management Association.

[13]  C.A. Bana e Costa,et al.  Software packages for multi-criteria resource allocation , 2008, 2008 IEEE International Engineering Management Conference.

[14]  Craig W. Kirkwood,et al.  Strategic decision making : multiobjective decision analysis with spreadsheets : instructor's manual , 1996 .

[15]  Deeparnab Chakrabarty,et al.  Knapsack Problems , 2008 .

[16]  Ward Edwards,et al.  How to Use Multiattribute Utility Measurement for Social Decisionmaking , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Carlos A. Bana e Costa,et al.  The use of multi‐criteria decision analysis to support the search for less conflicting policy options in a multi‐actor context: case study , 2001 .

[18]  T. Keelin,et al.  How SmithKline Beecham makes better resource-allocation decisions. , 1998, Harvard business review.

[19]  Bjarne Stroustrup,et al.  The Design and Evolution of C , 1994 .

[20]  L. J. Savage,et al.  Three Problems in Rationing Capital , 1955 .

[21]  Norman P. Archer,et al.  Project portfolio selection through decision support , 2000, Decis. Support Syst..

[22]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[23]  Dennis M. Buede,et al.  Applications of Decision Analysis to the Military Systems Acquisition Process , 1992 .

[24]  João Carlos Lourenço,et al.  Development of Reusable Bid Evaluation Models for the Portuguese Electric Transmission Company , 2008, Decis. Anal..

[25]  Michael Boehlje,et al.  Use of Linear Programming in Capital Budgeting With Multiple Goals: Reply , 1974 .

[26]  Ahti Salo,et al.  Preference programming for robust portfolio modeling and project selection , 2007, Eur. J. Oper. Res..

[27]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[28]  Leonardo Ensslin,et al.  Decision Support Systems in action: Integrated application in a multicriteria decision aid process , 1999, Eur. J. Oper. Res..

[29]  Bjarne Stroustrup,et al.  The C++ programming language (2nd ed.) , 1991 .

[30]  Alec Morton,et al.  Behavioural decision theory for multi-criteria decision analysis: a guided tour , 2009, J. Oper. Res. Soc..

[31]  Stephen M. Hess,et al.  Prioritizing Project Selection , 2009 .

[32]  Bernard Roy,et al.  Problems and methods with multiple objective functions , 1971, Math. Program..

[33]  Bjarne Stroustrup,et al.  The C++ Programming Language, 4th Edition , 2013 .

[34]  Carlos A. Bana e Costa,et al.  Prioritization of bridges and tunnels in earthquake risk mitigation using multicriteria decision analysis: Application to Lisbon , 2008 .

[35]  睦憲 柳浦,et al.  Combinatorial Optimization : Theory and Algorithms (3rd Edition), B. Korte and J. Vygen 著, 出版社 Springer, 発行 2006年, 全ページ 597頁, 価格 53.45ユーロ, ISBN 3-540-25684-9 , 2006 .

[36]  Carlos A. Bana e Costa,et al.  Prioritisation of public investments in social infrastructures using multicriteria value analysis and decision conferencing: a case study , 2006, Int. Trans. Oper. Res..

[37]  Bernard Roy,et al.  A missing link in OR-DA : robustness analysis , 1998 .

[38]  Kamal Golabi,et al.  Selecting a group of dissimilar projects for funding , 1987, IEEE Transactions on Engineering Management.

[39]  Carlos A. Bana e Costa,et al.  Multicriteria approach for strategic town planning: the case of Barcelos , 2001 .

[40]  The Excess Present Value Index-A Theoretical Basis and Critique , 1963 .

[41]  Jeffrey M. Keisler,et al.  Portfolio decision analysis : improved methods for resource allocation , 2011 .

[42]  Ralph L. Keeney,et al.  Value-Focused Thinking: A Path to Creative Decisionmaking , 1992 .

[43]  Philippe Vincke,et al.  Measuring credibility of compensatory preference statements when trade-offs are interval determined , 1995 .

[44]  L. Alberto Franco,et al.  Structuring resource allocation decisions: A framework for building multi-criteria portfolio models with area-grouped options , 2009, Eur. J. Oper. Res..

[45]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[46]  Richard J. Zeckhauser,et al.  Critical ratios and efficient allocation , 1973 .

[47]  L. Phillips A theory of requisite decision models , 1984 .

[48]  Juuso Liesiö,et al.  Portfolio decision analysis for robust project selection and resource allocation , 2008 .

[49]  Thierry Marchant,et al.  Evaluation and Decision Models with Multiple Criteria: Stepping Stones for the Analyst , 2006 .

[50]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[51]  Carlos A. Bana e Costa,et al.  Transparent prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing , 2007, Ann. Oper. Res..

[52]  Alexandra M. Newman,et al.  Optimizing Military Capital Planning , 2004, Interfaces.

[53]  Ahti Salo,et al.  Robust portfolio modeling with incomplete cost information and project interdependencies , 2008, Eur. J. Oper. Res..

[54]  Carlos A. Bana e Costa,et al.  An Additive Value Function Technique with a Fuzzy Outranking Relation for Dealing with Poor Intercriteria Preference Information , 1990 .

[55]  Kamal Golabi,et al.  Selecting a Portfolio of Solar Energy Projects Using Multiattribute Preference Theory , 1981 .

[56]  A.N.M. Bazlur Rashid The 0-1 Knapsack Problem , 2010 .

[57]  C. B. E. Costa,et al.  Prioritizing health care interventions: A multicriteria resource allocation model to inform the choice of community care programmes , 2012 .

[58]  C. Kirkwood Strategic Decision Making , 1996 .

[59]  Gregory S. Parnell,et al.  Improving Resource Allocation Within the National Reconnaissance Office , 2002, Interfaces.