InSight Auxiliary Payload Sensor Suite (APSS)

NASA’s InSight mission to Mars will measure seismic signals to determine the planet’s interior structure. These highly sensitive seismometers are susceptible to corruption of their measurements by environmental changes. Magnetic fields, atmosphere pressure changes, and local winds can all induce apparent changes in the seismic records that are not due to propagating ground motions. Thus, InSight carries a set of sensors called the Auxiliary Payload Sensor Suite (APSS) which includes a magnetometer, an atmospheric pressure sensor, and a pair of wind and air temperature sensors. In the case of the magnetometer, knowledge of the amplitude of the fluctuating magnetic field at the InSight lander will allow the separation of seismic signals from potentially interfering magnetic signals of either natural or spacecraft origin. To acquire such data, a triaxial fluxgate magnetometer was installed on the deck of the lander to obtain magnetic records at the same cadence as the seismometer. Similarly, a highly sensitive pressure sensor is carried by InSight to enable the removal of local ground-surface tilts due to advecting pressure perturbations. Finally, the local winds (speed and direction) and air temperature are estimated using a hot-film wind sensor with heritage from REMS on the Curiosity rover. When winds are too high, seismic signals can be ignored or discounted. Herein we describe the APSS sensor suite, the test programs for its components, and the possible additional science investigations it enables.

[1]  S. Jiménez,et al.  Retrieval of ultraviolet spectral irradiance from filtered photodiode measurements , 2009 .

[2]  J. Tillman,et al.  Observations of Martian surface winds at the Viking Lander 1 Site , 1990 .

[3]  Thomas Jahr,et al.  On reduction of long-period horizontal seismic noise using local barometric pressure , 2007 .

[4]  C. Russell,et al.  Limits on the possible intrinsic magnetic field of Venus , 1980 .

[5]  S. Dolginov On The magnetic field of Mars: Mars 2 and 3 evidence , 1978 .

[6]  R. M. Henry,et al.  Mars meteorology - Three seasons at the surface , 1978 .

[7]  B. Mosser,et al.  Planetary seismology , 1993 .

[8]  Raphaël F. Garcia,et al.  Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts , 2017 .

[9]  John C. Doyle,et al.  Robust flow stability: theory, computations and experiments in near wall turbulence , 2004 .

[10]  C. Russell,et al.  Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere , 2016, Scientific Reports.

[11]  W. Zürn,et al.  On noise reduction in vertical seismic records below 2 mHz using local barometric pressure , 1995 .

[12]  E. Smith Planetary magnetic field experiments. , 1968 .

[13]  Jean‐Pierre Williams,et al.  Acoustic environment of the Martian surface , 2001 .

[14]  E. Wielandt,et al.  Magnetic field background variations can limit the resolution of seismic broad-band sensors , 2010 .

[15]  P. Lognonné,et al.  The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station , 1996, Bulletin of the Seismological Society of America.

[16]  M. Golombek,et al.  Pre-mission InSights on the Interior of Mars , 2019, Space Science Reviews.

[17]  J. Connerney,et al.  The MAVEN Magnetic Field Investigation , 2015 .

[18]  M. Grott,et al.  A spherical harmonic model of the lithospheric magnetic field of Mars , 2014 .

[19]  B. Romanowicz,et al.  The seismic OPTIMISM experiment , 1998 .

[20]  Ralph D. Lorenz,et al.  Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion , 2017 .

[21]  Mioara Mandea,et al.  Crustal magnetic field of Mars , 2004 .

[22]  L. N. Zhuzgov,et al.  The magnetic field of mars according to the data from the Mars 3 and Mars 5 , 1976 .

[23]  Seismometer Detection of Dust Devil Vortices by Ground Tilt , 2015, 1511.06580.

[24]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[25]  J. Romeral,et al.  A hot film anemometer for the Martian atmosphere , 2008 .

[26]  J. Wilczak,et al.  A New Turbulence Microbarometer and Its Evaluation Using the Budget of Horizontal Heat Flux , 2004 .

[27]  Alfred J. Bedard,et al.  A ‘‘Quad‐Disc’’ static pressure probe for measurement in adverse atmospheres: With a comparative review of static pressure probe designs , 1991 .

[28]  M. Menvielle,et al.  The OPTIMISM/MAG Mars-96 experiment: magnetic measurements onboard landers and related magnetic cleanliness program , 1998 .

[29]  Wolfgang Baumjohann,et al.  The Magnetospheric Multiscale Magnetometers , 2016 .

[30]  David Mimoun,et al.  The Noise Model of the SEIS Seismometer of the InSight Mission to Mars , 2017 .

[31]  N. Kobayashi,et al.  Array observation of background atmospheric waves in the seismic band from 1 mHz to 0.5 Hz , 2005 .

[32]  C. Russell The magnetic field of Mars: Mars 5 evidence re‐examined , 1978 .

[33]  Roland Martin,et al.  Atmospheric Science with InSight , 2018, Space Science Reviews.

[34]  Catherine L. Johnson,et al.  Global‐scale external magnetic fields at Mars measured at satellite altitude , 2017 .

[35]  Martin Knapmeyer,et al.  Influence of Body Waves, Instrumentation Resonances, and Prior Assumptions on Rayleigh Wave Ellipticity Inversion for Shallow Structure at the InSight Landing Site , 2018, Space Science Reviews.

[36]  C. Russell,et al.  The magnetotail of Mars: Phobos observations , 1990 .

[37]  C. Russell The Martian magnetic field , 1979 .

[38]  Peter Bradshaw,et al.  Effect of turbulence on pressure probes , 1981 .

[39]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[40]  J. P. Holman,et al.  Experimental methods for engineers , 1971 .

[41]  B. Langlais,et al.  In situ and remote characterization of the external field temporal variations at Mars , 2017 .

[42]  R. Haberle,et al.  Detection of Northern Hemisphere transient eddies at Gale Crater Mars , 2018, Icarus.

[43]  C. Johnson,et al.  A New Magnetic Field Activity Proxy for Mars From MAVEN Data , 2018, Geophysical Research Letters.

[44]  Spatio-Temporal Analysis of the Turbulent Boundary Layer and An Investigation of the Effects of Periodic Disturbances , 2012 .

[45]  H. Abu-Mulaweh,et al.  Prediction of the Temperature in a Fin Cooled by Natural Convection and Radiation , 2006 .

[46]  W. Massman,et al.  A model investigation of turbulence‐driven pressure‐pumping effects on the rate of diffusion of CO2, N2O, and CH4 through layered snowpacks , 1997 .

[47]  R. Haberle,et al.  Detecting secular climate change on Mars , 2010 .