Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces

We introduce a weighted reproducing kernel Hilbert space which is based on Walsh functions. The worst-case error for integration in this space is studied, especially with regard to (t, m, s)-nets. It is found that there exists a digital (t, m, s)-net, which achieves a strong tractability worst-case error bound under certain condition on the weights.We also investigate the worst-case error of integration in weighted Sobolev spaces. As the main tool we define a digital shift invariant kernel associated to the kernel of the weighted Sobolev space. This allows us to study the mean square worst-case error of randomly digitally shifted digital (t, m, s)- nets. As this digital shift invariant kernel is almost the same as the kernel for the Hilbert space based on Walsh functions, we can derive results for the weighted Sobolev space based on the analysis of the Walsh function space. We show that there exists a (t, m, s)-net which achieves the best possible convergence order for integration in weighted Sobolev spaces and are strongly tractable under the same condition on the weights as for lattice rules.

[1]  Frances Y. Kuo,et al.  On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..

[2]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[3]  Peter Kritzer On some remarkable properties of the two-dimensional Hammersley point set in base 2 , 2006 .

[4]  Friedrich Pillichshammer On the root mean square weighted L2 discrepancy of scrambled nets , 2004, J. Complex..

[5]  Gerhard Larcher,et al.  On the numerical integration of Walsh series by number-theoretic methods , 1994 .

[6]  H. Niederreiter,et al.  Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .

[7]  K. Entacher Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II , 1997 .

[8]  Gerhard Larcher,et al.  On the numerical integration of high-dimensional Walsh-series by quasi-Monte Carlo methods , 1995 .

[9]  G. Larcher Digital Point Sets: Analysis and Application , 1998 .

[10]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[11]  Xiaoqun Wang A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..

[12]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[13]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[14]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[15]  Gerhard Larcher,et al.  BASE CHANGE PROBLEMS FOR GENERALIZED WALSH SERIES AND MULTIVARIATE NUMERICAL INTEGRATION , 1999 .

[16]  Xiaoqun Wang,et al.  Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..

[17]  T. J. Rivlin,et al.  Joseph L. Walsh : selected papers , 2000 .

[18]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[19]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[20]  Fred J. Hickernell,et al.  Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..

[21]  E. Hlawka Zur angenäherten Berechnung mehrfacher Integrale , 1962 .

[22]  Fred J. Hickernell,et al.  The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..

[23]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[24]  Karl Entacher,et al.  Quasi-monte carlo methods for numerical integration of multivariate Haar series , 1997 .

[25]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[26]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[27]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[28]  S. Tezuka Quasi-Monte Carlo — Discrepancy between Theory and Practice , 2002 .

[29]  Die endliche Fourier-Transformation , 1982 .

[30]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[31]  Harald Niederreiter,et al.  The Algebraic-Geometry Approach to Low-Discrepancy Sequences , 1998 .

[32]  Henryk Wozniakowski,et al.  Tractability of Integration in Non-periodic and Periodic Weighted Tensor Product Hilbert Spaces , 2002, J. Complex..

[33]  Henryk Wozniakowski,et al.  Liberating the weights , 2004, J. Complex..

[34]  E. Haacke Sequences , 2005 .

[35]  Henryk Wozniakowski,et al.  Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.

[36]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[37]  H. E. Chrestenson A class of generalized Walsh functions , 1955 .

[38]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[39]  Art B. Owen,et al.  Variance with alternative scramblings of digital nets , 2003, TOMC.

[40]  Josef Dick On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..

[41]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[42]  Fred J. Hickernell,et al.  Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..

[43]  Fred J. Hickernell,et al.  The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..

[44]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[45]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[46]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .