Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces
暂无分享,去创建一个
[1] Frances Y. Kuo,et al. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..
[2] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[3] Peter Kritzer. On some remarkable properties of the two-dimensional Hammersley point set in base 2 , 2006 .
[4] Friedrich Pillichshammer. On the root mean square weighted L2 discrepancy of scrambled nets , 2004, J. Complex..
[5] Gerhard Larcher,et al. On the numerical integration of Walsh series by number-theoretic methods , 1994 .
[6] H. Niederreiter,et al. Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .
[7] K. Entacher. Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II , 1997 .
[8] Gerhard Larcher,et al. On the numerical integration of high-dimensional Walsh-series by quasi-Monte Carlo methods , 1995 .
[9] G. Larcher. Digital Point Sets: Analysis and Application , 1998 .
[10] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[11] Xiaoqun Wang. A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..
[12] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[13] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[14] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[15] Gerhard Larcher,et al. BASE CHANGE PROBLEMS FOR GENERALIZED WALSH SERIES AND MULTIVARIATE NUMERICAL INTEGRATION , 1999 .
[16] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[17] T. J. Rivlin,et al. Joseph L. Walsh : selected papers , 2000 .
[18] J. Walsh. A Closed Set of Normal Orthogonal Functions , 1923 .
[19] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[20] Fred J. Hickernell,et al. Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..
[21] E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale , 1962 .
[22] Fred J. Hickernell,et al. The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..
[23] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[24] Karl Entacher,et al. Quasi-monte carlo methods for numerical integration of multivariate Haar series , 1997 .
[25] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[26] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[27] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[28] S. Tezuka. Quasi-Monte Carlo — Discrepancy between Theory and Practice , 2002 .
[29] Die endliche Fourier-Transformation , 1982 .
[30] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[31] Harald Niederreiter,et al. The Algebraic-Geometry Approach to Low-Discrepancy Sequences , 1998 .
[32] Henryk Wozniakowski,et al. Tractability of Integration in Non-periodic and Periodic Weighted Tensor Product Hilbert Spaces , 2002, J. Complex..
[33] Henryk Wozniakowski,et al. Liberating the weights , 2004, J. Complex..
[34] E. Haacke. Sequences , 2005 .
[35] Henryk Wozniakowski,et al. Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.
[36] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[37] H. E. Chrestenson. A class of generalized Walsh functions , 1955 .
[38] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[39] Art B. Owen,et al. Variance with alternative scramblings of digital nets , 2003, TOMC.
[40] Josef Dick. On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..
[41] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[42] Fred J. Hickernell,et al. Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..
[43] Fred J. Hickernell,et al. The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..
[44] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[45] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[46] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .