On the traveling salesman problem in binary Hamming spaces

Given a subset X of vertices of the n-cube (i.e., the n-dimensional Hamming space), we are interested in the solution of the traveling salesman problem; namely, the minimal length of a cycle passing through all vertices of X. For a given number M, we estimate the maximum of these lengths when X ranges over all possible choices of sets of M vertices. Asymptotically, our estimates show that for a number M of vertices growing exponentially in n, the maximum is attained for a code with maximal possible minimum distance.

[1]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[2]  Shu Lin,et al.  On the Probability of Undetected Error for the Maximum Distance Separable Codes , 1984, IEEE Trans. Commun..

[3]  Shu Lin,et al.  The binary weight distribution of the extended (2m,2m − 4) code of the Reed-Solomon code over GF(2m) with generator polynomial (x − α)(x − α2)(x − α3) , 1988 .

[4]  James A. Storer,et al.  Data Compression: Methods and Theory , 1987 .

[5]  Ian F. Blake,et al.  On the Complete Weight Enumerator of Reed-Solomon Codes , 1991, SIAM J. Discret. Math..

[6]  A. J. van Zanten Minimal-change order and separability in linear codes , 1993, IEEE Trans. Inf. Theory.

[7]  Juriaan Simonis,et al.  On Generator Matrices of Codes , 1992, IEEE Transactions on Information Theory.

[9]  Mark G. Karpovsky,et al.  Traveling salesman problem in the space of binary vectors , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[10]  I. Yu.,et al.  What is the maximum number of points on a curve over $F_2$? , 1982 .

[11]  Nikolai L. Manev,et al.  An improvement of the Griesmer bound for some small minimum distances , 1985, Discret. Appl. Math..

[12]  Earl R. Barnes,et al.  On some properties of the undetected error probability of linear codes (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[13]  Matti J. Aaltonen,et al.  Notes on the asymptotic behavior of the information rate of block codes , 1984, IEEE Trans. Inf. Theory.

[14]  Pascale Charpin,et al.  Studying the locator polynomials of minimum weight codewords of BCH codes , 1992, IEEE Trans. Inf. Theory.