Distributed Heuristic Forward Search for Multi-Agent Systems

This paper describes a number of distributed forward search algorithms for solving multi-agent planning problems. We introduce a distributed formulation of non-optimal forward search, as well as an optimal version, MAD-A*. Our algorithms exploit the structure of multi-agent problems to not only distribute the work efficiently among different agents, but also to remove symmetries and reduce the overall workload. The algorithms ensure that private information is not shared among agents, yet computation is still efficient -- outperforming current state-of-the-art distributed planners, and in some cases even centralized search -- despite the fact that each agent has access only to partial information.

[1]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[2]  Ronen I. Brafman,et al.  From One to Many: Planning for Loosely Coupled Multi-Agent Systems , 2008, ICAPS.

[3]  Makoto Yokoo,et al.  The Distributed Constraint Satisfaction Problem: Formalization and Algorithms , 1998, IEEE Trans. Knowl. Data Eng..

[4]  Ronen I. Brafman,et al.  Transferable Utility Planning Games , 2010, AAAI.

[5]  Boi Faltings,et al.  Privacy-Preserving Multi-agent Constraint Satisfaction , 2009, 2009 International Conference on Computational Science and Engineering.

[6]  Cees Witteveen,et al.  Coordinating Autonomous Planners , 2004, IC-AI.

[7]  Milind Tambe,et al.  Analysis of Privacy Loss in Distributed Constraint Optimization , 2006, AAAI.

[8]  Patrik Haslum,et al.  Flexible Abstraction Heuristics for Optimal Sequential Planning , 2007, ICAPS.

[9]  Qiang Yang,et al.  Learning action models from plan examples using weighted MAX-SAT , 2007, Artif. Intell..

[10]  Makoto Yokoo,et al.  Secure distributed constraint satisfaction: reaching agreement without revealing private information , 2002, Artif. Intell..

[11]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[12]  François Charpillet,et al.  MAA*: A Heuristic Search Algorithm for Solving Decentralized POMDPs , 2005, UAI.

[13]  Edmund H. Durfee,et al.  An efficient algorithm for multiagent plan coordination , 2005, AAMAS '05.

[14]  Carmel Domshlak,et al.  Optimal Additive Composition of Abstraction-based Admissible Heuristics , 2008, ICAPS.

[15]  Ioannis P. Vlahavas,et al.  Parallel planning via the distribution of operators , 2001, J. Exp. Theor. Artif. Intell..

[16]  Cees Witteveen,et al.  Coordinating Self Interested Autonomous Planning Agents , 2005, BNAIC.

[17]  Andrew Chi-Chih Yao,et al.  Protocols for Secure Computations (Extended Abstract) , 1982, FOCS.

[18]  Neil Immerman,et al.  The Complexity of Decentralized Control of Markov Decision Processes , 2000, UAI.

[19]  Cees Witteveen,et al.  Framework and Complexity Results for Coordinating Non-cooperative Planning Agents , 2006, MATES.

[20]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Joan Feigenbaum,et al.  A new approach to interdomain routing based on secure multi-party computation , 2012, HotNets-XI.

[22]  Eva Onaindia,et al.  An approach to multi-agent planning with incomplete information , 2012, ECAI.

[23]  Ronen I. Brafman,et al.  A general, fully distributed multi-agent planning algorithm , 2010, AAMAS.

[24]  Robert C. Holte Common Misconceptions Concerning Heuristic Search , 2010, SOCS.

[25]  Shlomo Zilberstein,et al.  LAO*: A heuristic search algorithm that finds solutions with loops , 2001, Artif. Intell..

[26]  Francesca Rossi,et al.  Multi‐Agent Constraint Systems with Preferences: Efficiency, Solution Quality, and Privacy Loss , 2004, Comput. Intell..

[27]  Ronen I. Brafman,et al.  Tunneling and Decomposition-Based State Reduction for Optimal Planning , 2012, ECAI.

[28]  Boi Faltings,et al.  M-DPOP: Faithful Distributed Implementations of Efficient Social Choice Problems , 2008 .

[29]  Leslie Lamport,et al.  Distributed snapshots: determining global states of distributed systems , 1985, TOCS.

[30]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[31]  Marius-Calin Silaghi,et al.  Distributed constraint satisfaction and optimization with privacy enforcement , 2004, Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004)..

[32]  Ronen I. Brafman,et al.  Planning Games , 2009, IJCAI.

[33]  Milind Tambe,et al.  Privacy Loss in Distributed Constraint Reasoning: A Quantitative Framework for Analysis and its Applications , 2006, Autonomous Agents and Multi-Agent Systems.

[34]  Akihiro Kishimoto,et al.  Scalable, Parallel Best-First Search for Optimal Sequential Planning , 2009, ICAPS.

[35]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[36]  Hector Geffner,et al.  Unifying the Causal Graph and Additive Heuristics , 2008, ICAPS.

[37]  Jörg Hoffmann,et al.  Computing Perfect Heuristics in Polynomial Time: On Bisimulation and Merge-and-Shrink Abstraction in Optimal Planning , 2011, IJCAI.

[38]  Amnon Meisels,et al.  Distributed Search by Constrained Agents: Algorithms, Performance, Communication , 2007, Advanced Information and Knowledge Processing.

[39]  Michael D. Smith,et al.  SSDPOP: improving the privacy of DCOP with secret sharing , 2007, AAMAS '07.

[40]  Wheeler Ruml,et al.  Best-First Heuristic Search for Multi-Core Machines , 2009, IJCAI.

[41]  Boi Faltings,et al.  A Scalable Method for Multiagent Constraint Optimization , 2005, IJCAI.

[42]  László Méro,et al.  A Heuristic Search Algorithm with Modifiable Estimate , 1984, Artif. Intell..