Ultraviolet sensor-based TiO2 nanorods/PProDOT-Pz conducting polymer using different bias voltage

[1]  S. Saxena,et al.  Fully Solution-Processed ZnO Nanorod Array/PEDOT:PSS Heterojunction Photodetector for Ultraviolet Light , 2022, IEEE Electron Device Letters.

[2]  F. Teng,et al.  A high-performance NiO/TiO2 UV photodetector: the influence of the NiO layer position , 2021, Journal of Materials Chemistry C.

[3]  J. Reynolds,et al.  Branched Oligo(ether) Side Chains: A Path to Enhanced Processability and Elevated Conductivity for Polymeric Semiconductors , 2021, Advanced Functional Materials.

[4]  D. Jiang,et al.  Research on piezo-phototronic effect in ZnO/AZO heterojunction flexible ultraviolet photodetectors , 2021 .

[5]  Ruxangul Jamal,et al.  Electrochemical synthesis of hydroxyl group-functionalized PProDOT/ZnO for an ultraviolet photodetector , 2021, RSC advances.

[6]  P. Pooja,et al.  Annealed n-TiO2/In2O3 nanowire metal-insulator-semiconductor for highly photosensitive low-noise ultraviolet photodetector , 2021 .

[7]  Jianping Xu,et al.  Influence of electrode materials (Ag, Au) on NiO/TiO2 heterojunction UV photodetectors , 2020 .

[8]  Wenjun Zhang,et al.  Tunable Photo‐Electrochemistry of Patterned TiO 2 /BDD Heterojunctions , 2020 .

[9]  M. Su,et al.  Preparation and UV Photoelectric Properties of Aligned ZnO-TiO2 and TiO2-ZnO Core-Shell Structured Heterojunction Nanotubes. , 2020, ACS applied materials & interfaces.

[10]  S. Yin,et al.  High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods , 2020 .

[11]  T. Min,et al.  3D TiO2/Diamond Ultraviolet Detector Using Back‐to‐Back Pd Schottky Electrode , 2020, physica status solidi (a).

[12]  Zuraida Khusaimi,et al.  Developing high-sensitivity UV sensors based on ZnO nanorods grown on TiO2 seed layer films using solution immersion method , 2020 .

[13]  D. Shen,et al.  Responsivity improvement of a packaged ZnMgO solar blind ultraviolet photodetector via a sealing treatment of silica gel , 2020 .

[14]  Karumbaiah N. Chappanda,et al.  Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array , 2019, Semiconductor Science and Technology.

[15]  S. M. Kumbhar,et al.  Hydrothermally-Grown TiO2 Thin Film-Based Metal–Semiconductor–Metal UV Photodetector , 2019, Journal of Electronic Materials.

[16]  J. C. Dhar,et al.  Self-powered UV detection using SnO2 nanowire arrays with Au Schottky contact , 2019, Materials Science in Semiconductor Processing.

[17]  Hong Wang,et al.  A multifunctional smart window: detecting ultraviolet radiation and regulating the spectrum automatically , 2019, Journal of Materials Chemistry C.

[18]  T. Majumder,et al.  Acid-Treated PEDOT:PSS Polymer and TiO2 Nanorod Schottky Junction Ultraviolet Photodetectors with Ultrahigh External Quantum Efficiency, Detectivity, and Responsivity. , 2018, ACS applied materials & interfaces.

[19]  Ziping Zhong,et al.  Poly(EDOT-pyridine-EDOT) and poly(EDOT-pyridazine-EDOT) hollow nanosphere materials for the electrochemical detection of Pb2+and Cu2+ , 2018, Journal of Electroanalytical Chemistry.

[20]  Mingdi Yang,et al.  Navy-to-transmissive electrochromic polymer based on 3,4-propylenedioxythiophene , 2018, Journal of Materials Science: Materials in Electronics.

[21]  S. Ruan,et al.  Enhanced performance of ultraviolet photodetector modified by quantum dots with high responsivity and narrow detection region , 2018, Journal of Alloys and Compounds.

[22]  S. Yin,et al.  TiO2 Nanorod Arrays Based Self-Powered UV Photodetector: Heterojunction with NiO Nanoflakes and Enhanced UV Photoresponse. , 2018, ACS applied materials & interfaces.

[23]  Tariq Alzoubi,et al.  Enhanced UV-light detection based on ZnO nanowires/graphene oxide hybrid using cost-effective low temperature hydrothermal process , 2018 .

[24]  T. Majumder,et al.  DMSO modified PEDOT:PSS polymer/ZnO nanorods Schottky junction ultraviolet photodetector: Photoresponse, external quantum efficiency, detectivity, and responsivity augmentation using N doped graphene quantum dots , 2018 .

[25]  Rujia Zou,et al.  Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering , 2017 .

[26]  Ting Shen,et al.  An air-stable ultraviolet photodetector based on mesoporous TiO2/spiro-OMeTAD , 2017 .

[27]  J. Fujisawa,et al.  Comparative study of conduction-band and valence-band edges of TiO 2 , SrTiO 3 , and BaTiO 3 by ionization potential measurements , 2017 .

[28]  Pingping Yu,et al.  Novel p–p Heterojunctions Self‐Powered Broadband Photodetectors with Ultrafast Speed and High Responsivity , 2017 .

[29]  H. Sardón,et al.  Easy‐to‐make carboxylic acid dioxythiophene monomer (ProDOT‐COOH) and functional conductive polymers , 2017 .

[30]  F. Liang,et al.  Single-layer graphene-TiO 2 nanotubes array heterojunction for ultraviolet photodetector application , 2016 .

[31]  Pingping Yu,et al.  Scalable-Production, Self-Powered TiO2 Nanowell-Organic Hybrid UV Photodetectors with Tunable Performances. , 2016, ACS applied materials & interfaces.

[32]  Pingping Yu,et al.  Ultrasensitive Self-Powered Solar-Blind Deep-Ultraviolet Photodetector Based on All-Solid-State Polyaniline/MgZnO Bilayer. , 2016, Small.

[33]  T. Darmanin,et al.  Perfluorinated ProDOT monomers for superhydrophobic/oleophobic surfaces elaboration , 2016 .

[34]  Hongxiang Lei,et al.  An organic-inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots. , 2016, Nanoscale.

[35]  Zainuriah Hassan,et al.  Effects of variations in precursor concentration on the growth of rutile TiO2 nanorods on Si substrate with fabricated fast-response metal–semiconductor–metal UV detector , 2015 .

[36]  Yibing Xie,et al.  Porous poly(3,4-ethylenedioxythiophene) nanoarray used for flexible supercapacitor , 2015 .

[37]  Chao Chen,et al.  The nearly 100% filling of PEDOT in TiO2 nanotube array by a simple electropolymerization method , 2015 .

[38]  Fanxu Meng,et al.  Ultrahigh responsivity UV detector based on TiO2/Pt-doped TiO2 multilayer nanofilms , 2014 .

[39]  Fanxu Meng,et al.  Effects of growth substrates on the morphologies of TiO2 nanowire arrays and the performance of assembled UV detectors , 2014 .

[40]  Peng Xiao,et al.  Preparation of SnO2@C-doping TiO2 nanotube arrays and its electrochemical and photoelectrochemical properties , 2013 .

[41]  Huijun Zhao,et al.  Robust TiO2/BDD heterojunction photoanodes for determination of chemical oxygen demand in wastewaters , 2011 .

[42]  Yunfeng Zhu,et al.  Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites , 2010 .

[43]  Hongsheng Luo,et al.  A highly sensitive and self-powered ultraviolet photodetector composed of titanium dioxide nanorods and polyaniline nanowires , 2015 .