Multiconfigurational time-dependent Hartree method for bosons with internal degrees of freedom:Theory and composite fragmentation of multicomponent Bose-Einstein condensates

In this paper, the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method is derived for the case of N identical bosons with internal degrees of freedom. The theory for bosons with internal degrees of freedom constitutes a generalization of the MCTDHB method that substantially enriches the many-body physics that can be described. We demonstrate that the numerically exact solution of the time-dependent many-body Schrodinger equation for interacting bosonic particles with internal degrees of freedom is now feasible. We report on the MCTDHB equations of motion for bosons with internal degrees of freedom and their implementation for a general many-body Hamiltonian with one-body and two-body terms, both of which may depend on the internal states of the considered particles and time. To demonstrate the capabilities of the theory and its software implementation integrated in the MCTDH-X software, we apply MCTDHB to the emergence of fragmentation of parabolically trapped bosons with two internal states: we study the ground state of N = 100 bosons as a function of the separation between the state-dependent minima of the two parabolic potentials. To quantify the coherence of the system, we compute its normalized first-order correlation function. We find that the coherence within each internal state of the atoms is maintained, while it is lost between the different internal states. This is a hallmark of a kind of fragmentation absent in bosons without internal structure. We term the emergent phenomenon ``composite fragmentation.

[1]  R. Bücker,et al.  Hanbury Brown and Twiss correlations across the Bose–Einstein condensation threshold , 2010, Nature Physics.

[2]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[3]  Ho,et al.  Fragmented and single condensate ground states of spin-1 bose Gas , 2000, Physical review letters.

[4]  L. Cederbaum,et al.  Role of excited states in the splitting of a trapped interacting Bose-Einstein condensate by a time-dependent barrier. , 2006, Physical review letters.

[5]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[6]  L. Cederbaum,et al.  Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type , 2012, 1207.5128.

[7]  R. Reimann,et al.  Superfluidity of interacting bosonic mixtures in optical lattices. , 2010, Physical review letters.

[8]  Maxim Olshanii Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons , 1998 .

[9]  Fragmentation of Bose-Einstein Condensates , 2006, cond-mat/0605711.

[10]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.

[11]  Portugal,et al.  Spinor Bose-Einstein condensate flow past an obstacle , 2008, 0811.1509.

[12]  U. R. Fischer,et al.  Condensate fragmentation as a sensitive measure of the quantum many-body behavior of bosons with long-range interactions , 2015, 1502.04889.

[13]  C. Wieman,et al.  Dynamical Response of a Bose-Einstein Condensate to a Discontinuous Change in Internal State , 1998, cond-mat/9803310.

[14]  Philipp Hauke,et al.  Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields , 2013, Nature Physics.

[15]  A. Lode Tunneling Dynamics in Open Ultracold Bosonic Systems , 2015 .

[16]  Ultracold few-boson systems in a double-well trap , 2006, quant-ph/0605210.

[17]  R. Graham,et al.  DYNAMICAL QUANTUM NOISE IN TRAPPED BOSE-EINSTEIN CONDENSATES , 1998 .

[18]  L. Cederbaum,et al.  General mapping for bosonic and fermionic operators in Fock space , 2009, 0910.2577.

[19]  Spatial fragmentation of a Bose-Einstein condensate in a double-well potential , 1998, quant-ph/9810094.

[20]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[21]  U. Manthe,et al.  Wave‐packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl , 1992 .

[22]  Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate , 1998, cond-mat/9806337.

[23]  A. Sinatra,et al.  Classical-field method for time dependent Bose-Einstein condensed gases. , 2001, Physical review letters.

[24]  L. Cederbaum,et al.  Reduced Density Matrices and Coherence of Trapped Interacting Bosons , 2008, 0802.3417.

[25]  Lorenz S. Cederbaum,et al.  Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems , 2007, cond-mat/0703237.

[26]  The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications. , 2013, The Journal of chemical physics.

[27]  B. Allard,et al.  Sideband Rabi spectroscopy of finite-temperature trapped Bose gases , 2016, 1603.04699.

[28]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[29]  L. Cederbaum,et al.  Multiorbital mean-field approach for bosons, spinor bosons, and Bose-Bose and Bose-Fermi mixtures in real-space optical lattices , 2007 .

[30]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[31]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[32]  I. Lesanovsky,et al.  Radiofrequency-dressed-state potentials for neutral atoms , 2006 .

[33]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[34]  P. Hannaford,et al.  Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate , 2012, 1204.1591.

[35]  R. Glauber Quantum Theory of Optical Coherence , 2006 .

[36]  C. E. Wieman,et al.  Watching a Superfluid Untwist Itself: Recurrence of Rabi Oscillations in a Bose-Einstein Condensate , 1999 .

[37]  Wu-Ming Liu,et al.  Fragmentation of spin-orbit-coupled spinor Bose-Einstein condensates , 2014, 1405.5708.

[38]  M. Lewenstein,et al.  Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.

[39]  O. Penrose,et al.  Bose-Einstein Condensation and Liquid Helium , 1956 .

[40]  G. Evenbly,et al.  Entanglement renormalization in two spatial dimensions. , 2008, Physical review letters.

[41]  C. Wieman,et al.  Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998, cond-mat/9804138.

[42]  P. Bader,et al.  Fragmented many-body ground states for scalar bosons in a single trap. , 2008, Physical review letters.

[43]  L. Cederbaum,et al.  Exact quantum dynamics of a bosonic Josephson junction. , 2009, Physical review letters.

[44]  Jakob Reichel,et al.  Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip , 2009, 0904.4837.

[45]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[46]  L. You,et al.  Dynamic fragmentation of a spinor Bose-Einstein condensate , 2003 .

[47]  J. Schmiedmayer,et al.  Two-point phase correlations of a one-dimensional bosonic Josephson junction. , 2010, Physical review letters.

[48]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[49]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[50]  L. Cederbaum,et al.  Unified view on multiconfigurational time propagation for systems consisting of identical particles. , 2007, The Journal of chemical physics.