On a Five-Parameter Mittag-Leffler Function and the Corresponding Bivariate Fractional Operators

Several extensions of the classical Mittag-Leffler function, including multi-parameter and multivariate versions, have been used to define fractional integral and derivative operators. In this paper, we consider a function of one variable with five parameters, a special case of the Fox–Wright function. It turns out that the most natural way to define a fractional integral based on this function requires considering it as a function of two variables. This gives rise to a model of bivariate fractional calculus, which is useful in understanding fractional differential equations involving mixed partial derivatives.

[1]  P. Williams Fractional Calculus of Schwartz Distributions , 2007 .

[2]  Arran Fernandez,et al.  A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators , 2020, Comput. Appl. Math..

[3]  V. Kiryakova,et al.  The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus , 2010, Comput. Math. Appl..

[4]  Guofei Pang,et al.  What is the fractional Laplacian? A comparative review with new results , 2020, J. Comput. Phys..

[5]  A. Kilbas,et al.  An Analog of the Tricomi Problem for a Mixed Type Equation with a Partial Fractional Derivative , 2010 .

[6]  P. R. Stinga,et al.  User’s guide to the fractional Laplacian and the method of semigroups , 2018, Fractional Differential Equations.

[7]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[8]  R. Gorenflo,et al.  AN OPERATIONAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO DERIVATIVES , 1999 .

[9]  D. Baleanu,et al.  FRACTIONAL CAPUTO HEAT EQUATION WITHIN THE DOUBLE LAPLACE TRANSFORM , 2013 .

[10]  Arran Fernandez,et al.  An elliptic regularity theorem for fractional partial differential operators , 2018, 1804.01067.

[11]  V. Kiryakova Unified Approach to Fractional Calculus Images of Special Functions—A Survey , 2020, Mathematics.

[12]  Ismail T. Huseynov,et al.  A natural extension of Mittag-Leffler function associated with a triple infinite series , 2020, 2011.03999.

[13]  Junesang Choi,et al.  A Note on Fractional Integral Operator Associated with Multiindex Mittag-Leffler Functions , 2016 .

[14]  Dumitru Baleanu,et al.  Solving PDEs of fractional order using the unified transform method , 2018, Appl. Math. Comput..

[15]  Arran Fernandez,et al.  Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations , 2021, Commun. Nonlinear Sci. Numer. Simul..

[16]  J. Nieto,et al.  Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation , 2019, Discrete & Continuous Dynamical Systems - B.

[17]  R. K. Saxena,et al.  Generalized mittag-leffler function and generalized fractional calculus operators , 2004 .

[18]  Dumitru Baleanu,et al.  On some new properties of fractional derivatives with Mittag-Leffler kernel , 2017, Commun. Nonlinear Sci. Numer. Simul..

[19]  Yuri Luchko The Four-Parameters Wright Function of the Second kind and its Applications in FC , 2020, Mathematics.

[20]  Dumitru Baleanu,et al.  Classes of operators in fractional calculus: A case study , 2021, Mathematical Methods in the Applied Sciences.

[21]  Iu.N. Rabotnov Elements of hereditary solid mechanics , 1980 .

[22]  Arran Fernandez,et al.  On the fractional calculus of multivariate Mittag-Leffler functions , 2021 .

[23]  Yuqiang Feng,et al.  Exact Solutions to the Fractional Differential Equations with Mixed Partial Derivatives , 2018, Axioms.

[24]  Hyperbolic differential equations of generalized order , 1983 .

[25]  D. Baleanu,et al.  Relations between fractional models with three-parameter Mittag-Leffler kernels , 2020 .

[26]  Dumitru Baleanu,et al.  Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions , 2018, Commun. Nonlinear Sci. Numer. Simul..

[27]  Arran Fernandez,et al.  Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus , 2020, Fractal and Fractional.

[28]  Virginia Kiryakova,et al.  A Guide to Special Functions in Fractional Calculus , 2021 .

[29]  Eridani,et al.  Morrey spaces and fractional integral operators , 2008, 0806.2391.

[30]  Arran Fernandez,et al.  On a certain bivariate Mittag‐Leffler function analysed from a fractional‐calculus point of view , 2020, Mathematical Methods in the Applied Sciences.

[31]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[32]  A. Atangana,et al.  New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.

[33]  Arran Fernandez,et al.  Explicit analytical solutions of incommensurate fractional differential equation systems , 2021, Appl. Math. Comput..

[34]  Jai N arain Vyas MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS , 2005 .

[35]  M. Ali Özarslan,et al.  Bivariate Mittag-Leffler functions arising in the solutions of convolution integral equation with 2D-Laguerre-Konhauser polynomials in the kernel , 2019, Appl. Math. Comput..

[36]  M. Garg,et al.  A Mittag-Leffler-type function of two variables , 2013 .

[37]  J. Nieto,et al.  Nonlocal time porous medium equation with fractional time derivative , 2018, Revista Matemática Complutense.

[38]  S. Kalla,et al.  Multivariate analogue of generalized Mittag-Leffler function , 2011 .