Nanometer-Scale Thermoelectric Materials

[1]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[2]  Yu-Ming Lin,et al.  Anomalously high thermoelectric figure of merit in Bi1−xSbx nanowires by carrier pocket alignment , 2001 .

[3]  H. Scherrer,et al.  Bi-Sb alloys: an update , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[4]  Kenneth E. Goodson Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures , 1996 .

[5]  Gang Chen,et al.  Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires , 2004 .

[6]  Donald T. Morelli,et al.  Magnetoresistance of bismuth nanowire arrays: A possible transition from one-dimensional to three-dimensional localization , 1998 .

[7]  J. Heremans Thermoelectric power, electrical and thermal resistance, and magnetoresistance of nanowire composites. , 2003 .

[8]  H. Zogg,et al.  Self-assembled semiconductor quantum dots with nearly uniform sizes. , 2003, Physical review letters.

[9]  L. Friedman Thermopower of superlattices as a probe of the density of states distribution , 1984 .

[10]  B. A. Efimova,et al.  Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides II. Experiment , 1971 .

[11]  Chen,et al.  Low-temperature transport properties of p-type CoSb3. , 1995, Physical review. B, Condensed matter.

[12]  Ali Shakouri,et al.  Heterostructure integrated thermionic coolers , 1997 .

[13]  O. Johansen Thermal Conductivity of Soils , 1977 .

[14]  Ali Shakouri,et al.  Improved thermoelectric power factor in metal-based superlattices. , 2004, Physical review letters.

[15]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[16]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[17]  Mildred S. Dresselhaus,et al.  Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials , 1993 .

[18]  C. M. Thrush,et al.  Thermoelectric power of bismuth nanocomposites. , 2002, Physical review letters.

[19]  Moore,et al.  Two-dimensional weak localization in partially graphitic carbons. , 1990, Physical review. B, Condensed matter.

[20]  John L. Moll,et al.  Physics of Semiconductors , 1964 .

[21]  D. J. Bergman,et al.  Thermoelectric properties of a composite medium , 1991 .

[22]  李幼升,et al.  Ph , 1989 .

[23]  J. Tauc,et al.  Photo and thermoelectric effects in semiconductors , 1962 .

[24]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[25]  B. W. Roberts Survey of superconductive materials and critical evaluation of selected properties , 1976 .

[26]  Maria Telkes,et al.  The Efficiency of Thermoelectric Generators. I. , 1947 .

[27]  Heremans,et al.  Thermal conductivity and thermopower of vapor-grown graphite fibers. , 1985, Physical review. B, Condensed matter.

[28]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[29]  John Stockholm Large-Scale Cooling: Integrated Thermoelectric Element Technology , 1995 .

[30]  Peter L. Balise,et al.  Applications of Thermoelectricity , 1960 .

[31]  C. Tien,et al.  Thermal conductivities of quantum well structures , 1993 .

[32]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[33]  Jingqi Li,et al.  Thermal conductivity of multiwalled carbon nanotubes , 2002 .

[34]  C. M. Thrush,et al.  Resistance, magnetoresistance, and thermopower of zinc nanowire composites. , 2003, Physical review letters.

[35]  J. Issi,et al.  Electron and hole transport in bismuth , 1972 .

[36]  J. M. Borrego,et al.  THE EFFICIENCY OF THERMOELECTRIC GENERATORS , 1958 .

[37]  H. Linke,et al.  Reversible thermoelectric nanomaterials. , 2004, Physical Review Letters.

[38]  C. F. Gallo,et al.  Transport Properties of Bismuth Single Crystals , 1963 .

[39]  Langer,et al.  Quantum transport in a multiwalled carbon nanotube. , 1996, Physical review letters.

[40]  O. Narayan,et al.  Anomalous heat conduction in one-dimensional momentum-conserving systems. , 2002, Physical review letters.

[41]  A. Casian,et al.  Thermoelectric properties of n-type PbTe/Pb 1-x Eu x Te quantum wells , 2000 .

[42]  Thermal conductivity of quantum well structures , 1992 .

[43]  A. Guinier Structure of Age-Hardened Aluminium-Copper Alloys , 1938, Nature.

[44]  Modulation of thermoelectric power of individual carbon nanotubes. , 2003, Physical review letters.

[45]  Holy,et al.  Tuning of vertical and lateral correlations in self-organized PbSe/Pb1-xEuxTe quantum dot superlattices , 2000, Physical review letters.

[46]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[47]  Gerald D. Mahan,et al.  Multilayer Thermionic Refrigeration , 1998 .

[48]  D T Morelli,et al.  Geometrical magnetothermopower in semiconductors. , 2001, Physical review letters.

[49]  C. M. Thrush,et al.  Transport properties of antimony nanowires , 2001 .

[50]  R. Peierls Zur Theorie der galvanomagnetischen Effekte , 1929 .

[51]  H. Oji Thermopower and thermal conductivity in two-dimensional systems in a quantizing magnetic field , 1984 .

[52]  N. Mott,et al.  Observation of Anderson Localization in an Electron Gas , 1969 .

[53]  Steven G. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999 .

[54]  Jorge O. Sofo,et al.  Thermoelectric figure of merit of superlattices , 1994 .

[55]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[56]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[57]  Microstructure and Electrical Properties of PbTe Based Films Prepared by Pulsed Laser Deposition , 2001 .

[58]  I. B. Cadoff,et al.  Thermoelectric materials and devices , 1960 .

[59]  G. D. Preston Structure of Age-Hardened Aluminium-Copper Alloys , 1938, Nature.

[60]  P. Eklund,et al.  Atom Collision-Induced Resistivity of Carbon Nanotubes , 2004, Science.

[61]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[62]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[63]  Joseph P. Heremans,et al.  Thermoelectric power of bismuth nanowires , 1999 .

[64]  W. Zawadzki,et al.  Magnetization, specific heat, magneto-thermal effect and thermoelectric power of two-dimensional electron gas in a quantizing magnetic field , 1984 .

[65]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[66]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[67]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[68]  Yu. I. Ravich,et al.  Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides , 1971 .

[69]  Bayot,et al.  Weak localization in pregraphitic carbon fibers. , 1989, Physical review. B, Condensed matter.

[70]  Holy,et al.  Self-organized growth of three- dimensional quantum-Dot crystals with fcc-like stacking and a tunable lattice constant , 1998, Science.

[71]  F. D. Rosi,et al.  Semiconductor materials for thermoelectric power generation up to 700 C , 1960, Electrical Engineering.

[72]  Fischer,et al.  Phonon radiative heat transfer and surface scattering. , 1988, Physical review. B, Condensed matter.

[73]  Z. Pan,et al.  Linear specific heat of carbon nanotubes , 1999 .

[74]  L. Friedman,et al.  Thermoelectric power of superlattices. II , 1985 .

[75]  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[76]  Eklund,et al.  Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes , 2000, Physical review letters.

[77]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .

[78]  P. Eklund,et al.  Giant thermopower effects from molecular physisorption on carbon nanotubes. , 2002, Physical review letters.

[79]  T. Irie,et al.  The Thermoelectric Properties of AgSbTe2–AgBiTe2, AgSbTe2–PbTe and–SnTe Systems , 1963 .

[80]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[81]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[82]  Yu-Ming Lin,et al.  Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires , 2000 .

[83]  Reinecke,et al.  Thermoelectric figure of merit of composite superlattice systems. , 1995, Physical review. B, Condensed matter.

[84]  Yu-Ming Lin,et al.  Bismuth nanowire arrays: Synthesis and galvanomagnetic properties , 2000 .

[85]  B. C. Daly,et al.  Molecular dynamics calculation of the thermal conductivity of superlattices , 2002 .

[86]  J. Watson,et al.  SUPERCONDUCTING METALS IN POROUS GLASS AS GRANULAR SUPERCONDUCTORS. , 1969 .

[87]  Campbell,et al.  Momentum conservation implies anomalous energy transport in 1D classical lattices , 1999, Physical review letters.

[88]  Jihui Yang,et al.  Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering , 2004 .

[89]  Alexei Abrikosov,et al.  Fundamentals of the theory of metals , 1988 .

[90]  Kuei-Fang Hsu,et al.  Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag-Sb microstructures. , 2004, Physical review letters.

[91]  Mahan,et al.  Minimum thermal conductivity of superlattices , 2000, Physical review letters.

[92]  M. Dresselhaus,et al.  Thermoelectric Nanowires by Electrochemical Deposition , 2001 .

[93]  Sakamoto,et al.  Anisotropic heat conduction in diacetylenes. , 1986, Physical review letters.

[94]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[95]  Joachim Nurnus,et al.  High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity , 2002 .

[96]  M. Dresselhaus,et al.  Experimental proof-of-principle investigation of enhanced Z[sub 3D]T in (001) oriented Si/Ge superlattices , 2000 .

[97]  R. Granger,et al.  High temperature superconducting behaviour in PbTePb system , 1973 .

[98]  M. Dresselhaus,et al.  Phonon Thermal Conductivity of Superlattice Nanowires for Thermoelectric Applications , 2003 .

[99]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[100]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[101]  A. Majumdar Microscale Heat Conduction in Dielectric Thin Films , 1993 .

[102]  D. Broido,et al.  Comment on ‘‘Use of quantum well superlattices to obtain high figure of merit from nonconventional thermoelectric materials’’ [Appl. Phys. Lett. 63, 3230 (1993)] , 1995 .

[103]  T. N. Todorov,et al.  Carbon nanotubes as long ballistic conductors , 1998, Nature.

[104]  W. Tiller,et al.  A Structural Study of the Compound AgSbTe2 , 1960 .