SUPG reduced order models for convection-dominated convection–diffusion–reaction equations

Abstract This paper presents a Streamline-Upwind Petrov–Galerkin (SUPG) reduced order model (ROM) based on proper orthogonal decomposition (POD). This ROM is investigated theoretically and numerically for convection-dominated convection–diffusion–reaction problems. The SUPG finite element method was used on realistic meshes for computing the snapshots, leading to some noise in the POD data. Numerical analysis is used to propose the scaling of the stabilization parameter for the SUPG-ROM. Two approaches are used: One based on the underlying finite element discretization and the other one based on the POD truncation. The resulting SUPG-ROMs and the standard Galerkin ROM (G-ROM) are studied numerically. For many settings, the results obtained with the SUPG-ROMs are more accurate. Finally, one of the choices for the stabilization parameter is recommended.

[1]  Zhu Wang,et al.  Are the Snapshot Difference Quotients Needed in the Proper Orthogonal Decomposition? , 2013, SIAM J. Sci. Comput..

[2]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[3]  Volker John,et al.  Finite element methods for time-dependent convection – diffusion – reaction equations with small diffusion , 2008 .

[4]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[5]  Traian Iliescu,et al.  A numerical investigation of velocity-pressure reduced order models for incompressible flows , 2014, J. Comput. Phys..

[6]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[7]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[8]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[9]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[10]  Nadine Aubry,et al.  Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..

[11]  Matthew F. Barone,et al.  Stable Galerkin reduced order models for linearized compressible flow , 2009, J. Comput. Phys..

[12]  Volker John,et al.  Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations , 2011, SIAM J. Numer. Anal..

[13]  Ramon Codina,et al.  Explicit reduced‐order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations , 2013 .

[14]  John R. Singler,et al.  New POD Error Expressions, Error Bounds, and Asymptotic Results for Reduced Order Models of Parabolic PDEs , 2014, SIAM J. Numer. Anal..

[15]  Luca Dedè,et al.  Reduced Basis method for parametrized elliptic advection-reaction problems , 2010 .

[16]  Traian Iliescu,et al.  Variational multiscale proper orthogonal decomposition: Navier‐stokes equations , 2012, 1210.7389.

[17]  Christopher J. Earls,et al.  International Journal for Numerical Methods in Engineering , 2009 .

[18]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[21]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[22]  Torsten Linß,et al.  Numerical methods on Shishkin meshes for linear convection-diffusion problems , 2001 .

[23]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[24]  G. Rozza,et al.  Stabilized reduced basis method for parametrized advection-diffusion PDEs , 2014 .

[25]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[26]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[27]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[28]  Volker John,et al.  An assessment of discretizations for convection-dominated convection–diffusion equations , 2011 .

[29]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[30]  Wolfgang Dahmen,et al.  DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS ∗ , 2013, 1302.5072.

[31]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[32]  Volker John,et al.  On Finite Element Methods for 3D Time-Dependent Convection-Diffusion-Reaction Equations with Small Diffusion , 2008 .

[33]  Jean-Antoine Désidéri,et al.  Two stable POD-based approximations to the Navier–Stokes equations , 2000 .

[34]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[35]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[36]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[37]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[38]  Matthew F. Barone,et al.  Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment , 2014 .

[39]  Yintzer Shih,et al.  An exponential-fitting finite element method for convection-diffusion problems , 2011, Appl. Math. Comput..

[40]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[41]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[42]  Earl H. Dowell,et al.  Stabilization of projection-based reduced order models of the Navier–Stokes , 2012 .