Structural view of glycosaminoglycan-protein interactions.

[1]  J. Huntington,et al.  Crystal Structure of Monomeric Native Antithrombin Reveals a Novel Reactive Center Loop Conformation* , 2006, Journal of Biological Chemistry.

[2]  Chenghua Shao,et al.  Crystallographic Analysis of Calcium-dependent Heparin Binding to Annexin A2* , 2006, Journal of Biological Chemistry.

[3]  A. Imberty,et al.  Organization of Human Interferon γ−Heparin Complexes from Solution Properties and Hydrodynamics† , 2006 .

[4]  J. Angulo,et al.  Solution NMR structure of a human FGF‐1 monomer, activated by a hexasaccharide heparin‐analogue , 2006, The FEBS journal.

[5]  M. Martín-Pastor,et al.  Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods , 2006, Journal of biomolecular NMR.

[6]  A. Tocilj,et al.  Crystal Structure of Heparinase II from Pedobacter heparinus and Its Complex with a Disaccharide Product* , 2006, Journal of Biological Chemistry.

[7]  J. Huntington,et al.  Antithrombin–S195A factor Xa‐heparin structure reveals the allosteric mechanism of antithrombin activation , 2006, The EMBO journal.

[8]  M. J. Jedrzejas,et al.  Hyaluronidases: their genomics, structures, and mechanisms of action. , 2006, Chemical reviews.

[9]  Christopher J. Robinson,et al.  Multimers of the fibroblast growth factor (FGF)-FGF receptor-saccharide complex are formed on long oligomers of heparin. , 2006, The Biochemical journal.

[10]  Christopher J. Robinson,et al.  VEGF165-binding Sites within Heparan Sulfate Encompass Two Highly Sulfated Domains and Can Be Liberated by K5 Lyase* , 2006, Journal of Biological Chemistry.

[11]  Jia-huai Wang,et al.  The structures of the thrombospondin-1 N-terminal domain and its complex with a synthetic pentameric heparin. , 2006, Structure.

[12]  D. Bonnaffé,et al.  Heparan Sulfate Mimicry , 2005, Journal of Biological Chemistry.

[13]  G. J. Swaminathan,et al.  Eosinophil-granule major basic protein, a C-type lectin, binds heparin. , 2005, Biochemistry.

[14]  T. Handel,et al.  Regulation of protein function by glycosaminoglycans--as exemplified by chemokines. , 2005, Annual review of biochemistry.

[15]  I. Campbell,et al.  Towards a Structure for a TSG-6·Hyaluronan Complex by Modeling and NMR Spectroscopy , 2005, Journal of Biological Chemistry.

[16]  J. Angulo,et al.  Conformational flexibility of a synthetic glycosylaminoglycan bound to a fibroblast growth factor. FGF-1 recognizes both the (1)C(4) and (2)S(O) conformations of a bioactive heparin-like hexasaccharide. , 2005, Journal of the American Chemical Society.

[17]  Shao‐Chen Lee,et al.  Structural Basis of Citrate-dependent and Heparan Sulfate-mediated Cell Surface Retention of Cobra Cardiotoxin A3* , 2005, Journal of Biological Chemistry.

[18]  J. Huntington,et al.  Crystal Structure of Thrombin Bound to Heparin* , 2005, Journal of Biological Chemistry.

[19]  Hugues Lortat-Jacob,et al.  NMR characterization of the interaction between the C-terminal domain of interferon-gamma and heparin-derived oligosaccharides. , 2004, The Biochemical journal.

[20]  C. Zwahlen,et al.  The X-ray structure of RANTES: heparin-derived disaccharides allows the rational design of chemokine inhibitors. , 2004, Structure.

[21]  R. Linhardt,et al.  Structural Analysis of the Sulfotransferase (3-O-Sulfotransferase Isoform 3) Involved in the Biosynthesis of an Entry Receptor for Herpes Simplex Virus 1* , 2004, Journal of Biological Chemistry.

[22]  David Bonnaffé,et al.  Synthesis of tailor-made glycoconjugate mimetics of heparan sulfate that bind IFN-gamma in the nanomolar range. , 2004, Chemistry.

[23]  J. Herbert,et al.  The ternary complex of antithrombin–anhydrothrombin–heparin reveals the basis of inhibitor specificity , 2004, Nature Structural &Molecular Biology.

[24]  C. Esmon,et al.  Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin , 2004, Nature Structural &Molecular Biology.

[25]  Robert J Linhardt,et al.  The Structure of Chondroitin B Lyase Complexed with Glycosaminoglycan Oligosaccharides Unravels a Calcium-dependent Catalytic Machinery* , 2004, Journal of Biological Chemistry.

[26]  K. Murthy,et al.  Structure of vaccinia complement protein in complex with heparin and potential implications for complement regulation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Handel,et al.  Identification of the Glycosaminoglycan Binding Site of the CC Chemokine, MCP-1 , 2004, Journal of Biological Chemistry.

[28]  R. Linhardt,et al.  High-resolution crystal structure of Arthrobacter aurescens chondroitin AC lyase: an enzyme-substrate complex defines the catalytic mechanism. , 2004, Journal of molecular biology.

[29]  A. Imberty,et al.  Characterization of Endostatin Binding to Heparin and Heparan Sulfate by Surface Plasmon Resonance and Molecular Modeling , 2004, Journal of Biological Chemistry.

[30]  M. J. Jedrzejas,et al.  Structures of Streptococcus pneumoniae Hyaluronate Lyase in Complex with Chondroitin and Chondroitin Sulfate Disaccharides , 2003, Journal of Biological Chemistry.

[31]  I. Campbell,et al.  The Link Module from Ovulation- and Inflammation-associated Protein TSG-6 Changes Conformation on Hyaluronan Binding* , 2003, Journal of Biological Chemistry.

[32]  J. Huntington,et al.  Crystal structure of antithrombin in a heparin-bound intermediate state. , 2003, Biochemistry.

[33]  K. Taylor,et al.  The function of hydrophobic residues in the catalytic cleft of Streptococcus pneumoniae hyaluronate lyase. Kinetic characterization of mutant enzyme forms. , 2003, The Journal of biological chemistry.

[34]  M. Petitou,et al.  1976-1983, a critical period in the history of heparin: the discovery of the antithrombin binding site. , 2003, Biochimie.

[35]  A. Imberty,et al.  A kinetics and modeling study of RANTES(9-68) binding to heparin reveals a mechanism of cooperative oligomerization. , 2002, Biochemistry.

[36]  R. Timpl,et al.  Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function , 2002, The EMBO journal.

[37]  B. L. de Groot,et al.  Structure and flexibility of Streptococcus agalactiae hyaluronate lyase complex with its substrate. Insights into the mechanism of processive degradation of hyaluronan. , 2002, The Journal of biological chemistry.

[38]  S. Stringer,et al.  Characterization of the binding site on heparan sulfate for macrophage inflammatory protein 1alpha. , 2002, Blood.

[39]  Bert L de Groot,et al.  Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. Structures of complexes with the substrate. , 2002, The Journal of biological chemistry.

[40]  A. Imberty,et al.  Structural diversity of heparan sulfate binding domains in chemokines , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Linhardt,et al.  Heparin-protein interactions. , 2002, Angewandte Chemie.

[42]  Songlin Li,et al.  Hyaluronan Binding and Degradation byStreptococcus agalactiae Hyaluronate Lyase* , 2001, The Journal of Biological Chemistry.

[43]  T L Blundell,et al.  Crystal structures of NK1–heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor , 2001, The EMBO journal.

[44]  G. Torri,et al.  Conformation of heparin pentasaccharide bound to antithrombin III. , 2001, The Biochemical journal.

[45]  Anne Imberty,et al.  Characterization of the Stromal Cell-derived Factor-1α-Heparin Complex* , 2001, The Journal of Biological Chemistry.

[46]  R. Linhardt,et al.  Active site of chondroitin AC lyase revealed by the structure of enzyme-oligosaccharide complexes and mutagenesis. , 2001, Biochemistry.

[47]  B. Seaton,et al.  Annexin V--heparin oligosaccharide complex suggests heparan sulfate--mediated assembly on cell surfaces. , 2001, Structure.

[48]  David F. Burke,et al.  Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin , 2000, Nature.

[49]  P. Rizkallah,et al.  Crystal structure of hyaluronidase, a major allergen of bee venom. , 2000, Structure.

[50]  J. Schlessinger,et al.  Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. , 2000, Molecular cell.

[51]  M. J. Jedrzejas,et al.  Mechanism of hyaluronan binding and degradation: structure of Streptococcus pneumoniae hyaluronate lyase in complex with hyaluronic acid disaccharide at 1.7 A resolution. , 2000, Journal of molecular biology.

[52]  J. Peng,et al.  An NMR and molecular modeling study of the site-specific binding of histamine by heparin, chemically modified heparin, and heparin-derived oligosaccharides. , 2000, Biochemistry.

[53]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[54]  A. Matte,et al.  Crystal structure of chondroitinase B from Flavobacterium heparinum and its complex with a disaccharide product at 1.7 A resolution. , 1999, Journal of molecular biology.

[55]  Rebecca C. Wade,et al.  Docking of Glycosaminoglycans to Heparin-Binding Proteins: Validation for aFGF, bFGF, and Antithrombin and Application to IL-8 , 1999 .

[56]  D. Stuart,et al.  The structure and function of a foot‐and‐mouth disease virus–oligosaccharide receptor complex , 1999, The EMBO journal.

[57]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[58]  Wayne A. Hendrickson,et al.  Structure of a heparin-linked biologically active dimer of fibroblast growth factor , 1998, Nature.

[59]  D. Spillmann,et al.  Defining the Interleukin-8-binding Domain of Heparan Sulfate* , 1998, The Journal of Biological Chemistry.

[60]  J. Abrahams,et al.  The anticoagulant activation of antithrombin by heparin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Hirsh,et al.  Heparin Binding Proteins Contribution to Heparin Rebound After Cardiopulmonary Bypass , 1993, Circulation.

[62]  S. Stringer,et al.  Specific Binding of the Chemokine Platelet Factor 4 to Heparan Sulfate* , 1997, The Journal of Biological Chemistry.

[63]  J. Whisstock,et al.  The 2.6 A structure of antithrombin indicates a conformational change at the heparin binding site. , 1997, Journal of molecular biology.

[64]  B. M. Pinto,et al.  Structure and dynamics of oligosaccharides: NMR and modeling studies. , 1996, Current opinion in structural biology.

[65]  D C Rees,et al.  Heparin Structure and Interactions with Basic Fibroblast Growth Factor , 1996, Science.

[66]  J. Turnbull,et al.  Molecular organization of the interferon gamma-binding domain in heparan sulphate. , 1995, The Biochemical journal.

[67]  Nelson Max,et al.  Advances in scientific visualization , 1995 .

[68]  B. Edwards,et al.  A model of the platelet factor 4 complex with heparin , 1992, Proteins.

[69]  P. Grootenhuis,et al.  Constructing a molecular model of the interaction between Antithrombin-III and a potent synthetic heparin Analogue. , 1991 .

[70]  L. Kjellén,et al.  Proteoglycans: structures and interactions. , 1991, Annual review of biochemistry.

[71]  P. Sanderson,et al.  Conformational equilibria of alpha-L-iduronate residues in disaccharides derived from heparin. , 1987, The Biochemical journal.