Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis

We first provide a critical review of statistical procedures employed in the literature for testing uncertainty in digital terrain analysis, then focus on several aspects of spatial autocorrelation that have been neglected in the analysis of gridded elevation data. When applied to first derivatives of elevation such as topographic slope, a spatial approach using Moran’s I and the LISA (Local Indicator of Spatial Association) allows: (1) georeferenced data patterns to be generated; (2) error hot- and coldspots to be located; and (3) error propagation during DEM manipulation to be evaluated. In a worked example focusing on the Wasatch mountain front, Utah, we analyse the relative advantages of six DEMs resulting from different acquisition modes (airborne, optical, radar, or composite): the LiDAR (2 m), CODEM (5 m), NED10 (10 m), ASTER DEM (15 m) and GDEM (30 m), and SRTM (90 m). The example shows that (apart from the LiDAR) the NED10, which is generated from composite data sources, is the least error-ridden DEM for that region. Knowing error magnitudes and where errors are located determines where corrections to elevation are required in order to minimize error accumulation or propagation, and clarifies how they might affect expert judgement in environmental decisions. Ground resolution issues can subsequently be addressed with greater confidence by resampling the preferred grid to terrain resolutions suited to the landscape attributes of interest. Source product testing is an essential yet often neglected part of DEM analysis, with many practical applications in hydrological modelling, for predictions of slope- to catchment-scale mass sediment flux, or for the assessment of slope stability thresholds.

[1]  S. Wechsler Uncertainties associated with digital elevation models for hydrologic applications: a review , 2006 .

[2]  Geoffrey M. Jacquez,et al.  Spatial Cluster Analysis , 2008 .

[3]  Akira Hirano,et al.  Mapping from ASTER stereo image data: DEM validation and accuracy assessment , 2003 .

[4]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[5]  Michael F. Goodchild,et al.  Modeling the Uncertainty of Slope and Aspect Estimates Derived from Spatial Databases , 2010 .

[6]  Saffet Erdogan,et al.  Modelling the spatial distribution of DEM error with geographically weighted regression: An experimental study , 2010, Comput. Geosci..

[7]  Mike J. Smith,et al.  Methods for the visualization of digital elevation models for landform mapping , 2005 .

[8]  M. Goodchild,et al.  Dealing with error in spatial databases: a simple case study , 1995 .

[9]  Joseph. Wood,et al.  The geomorphological characterisation of Digital Elevation Models , 1996 .

[10]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[11]  Carlos López-Vázquez,et al.  Locating Some Types of Random Errors in Digital Terrain Models , 1997, Int. J. Geogr. Inf. Sci..

[12]  Norbert Silvera,et al.  Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density , 2006 .

[13]  Arthur Getis,et al.  Spatial Interaction and Spatial Autocorrelation: A Cross-Product Approach , 1991 .

[14]  Tianxiang Yue,et al.  A new method of surface modeling and its application to DEM construction , 2007 .

[15]  K. Jones A comparison of algorithms used to compute hill slope as a property of the DEM , 1998 .

[16]  Roger L. King,et al.  DTM error minimization via adaptive smoothing [LIDAR forest measurements] , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[17]  J. McCalpin,et al.  Geometry of faceted spurs on an active normal fault: case study of the Central Wasatch Fault, Utah, U.S.A , 2000 .

[18]  Gerard B. M. Heuvelink,et al.  On the uncertainty of stream networks derived from elevation data: the error propagation approach , 2010 .

[19]  Peter F. Fisher,et al.  Causes and consequences of error in digital elevation models , 2006 .

[20]  K. Thapa,et al.  Accuracy of spatial data used in geographic information systems , 1992 .

[21]  Tomaz Podobnikar Methods for visual quality assessment of a digital terrain model , 2009 .

[22]  Mike J. Smith,et al.  Surface Roughness of Topography: A Multi-Scale Analysis of Landform Elements in Midland Valley, Scotland , 2009 .

[23]  Nicholas C. Coops,et al.  Evaluating error associated with lidar-derived DEM interpolation , 2009, Comput. Geosci..

[24]  Nicholas J. Tate,et al.  Improving user assessment of error implications in digital elevation models , 2008, Comput. Environ. Urban Syst..

[25]  J. Eblen A probabilistic investigation of slope stability in the Wasatch Range, Davis County, Utah , 1991 .

[26]  T. Bolch,et al.  DEM GENERATION FROM ASTER SATELLITE DATA FOR GEOMORPHOMETRIC ANALYSIS OF CERRO SILLAJHUAY, CHILE/BOLIVIA , 2003 .

[27]  Bruce H. Carlisle,et al.  Modelling the Spatial Distribution of DEM Error , 2005, Trans. GIS.

[28]  J. McCalpin,et al.  Soil catenas to estimate ages of movements on normal fault scarps, with an example from the Wasatch fault zone, Utah, USA , 1996 .

[29]  H. Piégay,et al.  PRATIQUE DE L'ANALYSE DE L'AUTOCORRÉLATION SPATIALE EN GÉOMORPHOLOGIE : DÉFINITIONS OPÉRATOIRES ET TESTS , 2004 .

[30]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[31]  T. Q. Binh,et al.  Assessment of the iníluence of interpolation techniques on the accuracy of digital elevation model , 2012 .

[32]  Xuejun Liu,et al.  Analysis of errors of derived slope and aspect related to DEM data properties , 2004, Comput. Geosci..

[33]  Michael B. Gousie DIGITAL ELEVATION MODEL ERROR DETECTION AND VISUALIZATION , 2022 .

[34]  P. Pizor Principles of Geographical Information Systems for Land Resources Assessment. , 1987 .

[35]  Stephen Wise,et al.  Assessing the quality for hydrological applications of digital elevation models derived from contours , 2000 .

[36]  Tonggang Zhang,et al.  Robust DEM co-registration method for terrain changes assessment using least trimmed squares estimator , 2008 .

[37]  Oksanen TRACING THE GROSS ERRORS OF DEM VISUALIZATION TECHNIQUES FOR PRELIMINARY QUALITY ANALYSIS , 2003 .

[38]  Shawn W. Laffan,et al.  Effect of error in the DEM on environmental variables for predictive vegetation modelling , 2004 .

[39]  A. Leick GPS satellite surveying , 1990 .

[40]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[41]  T. Hoey,et al.  Surface process models and the links between tectonics and topography , 2006 .

[42]  G. Stock,et al.  Spatial and temporal variations in denudation of the Wasatch Mountains, Utah, USA , 2009 .

[43]  Jeremy S. Fried,et al.  Adding Gaussian noise to inaccurate digital elevation models improves spatial fidelity of derived drainage networks , 2004 .

[44]  Feras M. Ziadat,et al.  Effect of Contour Intervals and Grid Cell Size on the Accuracy of DEMs and Slope Derivatives , 2007, Trans. GIS.

[45]  Carlos López,et al.  Improving the Elevation Accuracy of Digital Elevation Models: A Comparison of Some Error Detection Procedures , 2000, Trans. GIS.

[46]  D. Montgomery,et al.  Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology Using a Digital Terrain Model , 1993, The Journal of Geology.

[47]  G. Karras,et al.  DEM matching and detection of deformation in close-range photogrammetry without control , 1993 .

[48]  Matthew G. Hohmann,et al.  An evaluation of methods to determine slope using digital elevation data , 2004 .

[49]  L. Xuejun,et al.  Accuracy Assessment of DEM Slope Algorithms Related to Spatial Autocorrelation of DEM Errors , 2008 .

[50]  Jochen Schmidt,et al.  Comparison of polynomial models for land surface curvature calculation , 2003, Int. J. Geogr. Inf. Sci..

[51]  Mahendran Shitan,et al.  Evolution of Spatial Correlation of Mean Diameter: A Case Study of Trees in Natural Dipterocarp Forest , 2009 .

[52]  Kenneth C. Jezek,et al.  Investigating DEM Error Patterns by Directional Variograms and Fourier Analysis , 2010 .

[53]  Michael J. Collins,et al.  The effect of error in gridded digital elevation models on the estimation of topographic parameters , 2006, Environ. Model. Softw..

[54]  S. M. Wise,et al.  Effect of differing DEM creation methods on the results from a hydrological model , 2007, Comput. Geosci..

[55]  Peter F. Fisher,et al.  Improved Modeling of Elevation Error with Geostatistics , 1998, GeoInformatica.

[56]  Carlos López Locating some types of random errors in Digital Terrain Models , 1997 .

[57]  Gerard Govers,et al.  GIS-based simulation of erosion and deposition patterns in an agricultural landscape: a comparison of model results with soil map information , 1995 .

[58]  J. Lindsay,et al.  The influence of elevation error on the morphometrics of channel networks extracted from DEMs and the implications for hydrological modelling , 2008 .

[59]  Pierre Goovaerts,et al.  Geostatistical and local cluster analysis of high resolution hyperspectral imagery for detection of anomalies , 2005 .

[60]  David W. S. Wong,et al.  Effects of DEM sources on hydrologic applications , 2010, Comput. Environ. Urban Syst..

[61]  S. Wechsler,et al.  Quantifying DEM Uncertainty and its Effect on Topographic Parameters , 2006 .

[62]  M. Hutchinson,et al.  Digital terrain analysis. , 2008 .

[63]  Ross S. Purves,et al.  The influence of elevation uncertainty on derivation of topographic indices , 2009 .

[64]  Tapani Sarjakoski,et al.  Error propagation of DEM-based surface derivatives , 2005, Comput. Geosci..

[65]  Suzanne P. Wechsler,et al.  Perceptions of Digital Elevation Model Uncertainty by DEM Users , 2003 .

[66]  Tomislav Hengl,et al.  Chapter 4 Preparation of DEMs for Geomorphometric Analysis , 2009 .

[67]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[68]  Frank Canters,et al.  Assessing effects of input uncertainty in structural landscape classification , 2002, Int. J. Geogr. Inf. Sci..

[69]  John B. Lindsay,et al.  Sensitivity of channel mapping techniques to uncertainty in digital elevation data , 2006, Int. J. Geogr. Inf. Sci..

[70]  Igor V. Florinsky,et al.  Accuracy of Local Topographic Variables Derived from Digital Elevation Models , 1998, Int. J. Geogr. Inf. Sci..

[71]  B. Meyer,et al.  Faceted spurs at normal fault scarps: Insights from numerical modeling , 2009 .

[72]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[73]  Charles Robert Ehlschlaeger The stochastic simulation approach : tools for representing spatial application uncertainty , 1998 .

[74]  Les indicateurs locaux d'association spatiale (LISA) comme méthode de régionalisation : Une application en Inde. , 2005 .

[75]  Steven E. Franklin,et al.  Comparison of Derivative Topographic Surfaces of a DEM Generated from Stereoscopic SPOT Images with Field Measurements , 1996 .

[76]  Gabriele Bitelli,et al.  Comparison of Techniques for Generating Digital Terrain Models from Contour Lines , 1997, Int. J. Geogr. Inf. Sci..

[77]  Jo Wood,et al.  Spectral filtering as a method of visualising and removing striped artefacts in digital elevation data , 2008 .

[78]  Gerard B. M. Heuvelink,et al.  Propagation of errors in spatial modelling with GIS , 1989, Int. J. Geogr. Inf. Sci..

[79]  P. Bolstad,et al.  An evaluation of DEM accuracy: elevation, slope, and aspect , 1994 .

[80]  Stephen J. Walsh,et al.  Recognition and assessment of error in geographic information systems , 1987 .

[81]  Stefan Kienzle,et al.  The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain Derivatives , 2004, Trans. GIS.

[82]  W. Dietrich,et al.  Geomorphic transport laws for predicting landscape form and dynamics , 2013 .

[83]  Qiming Zhou,et al.  Error Analysis on Grid-Based Slope and Aspect Algorithms , 2004 .

[84]  P. Kyriakidis,et al.  Error in a USGS 30-meter digital elevation model and its impact on terrain modeling , 2000 .

[85]  G. Heuvelink,et al.  DEM resolution effects on shallow landslide hazard and soil redistribution modelling , 2005 .

[86]  Ángel M. Felicísimo,et al.  Parametric statistical method for error detection in digital elevation models , 1994 .

[87]  A. Nelson,et al.  Surficial geologic map of the Weber segment, Wasatch Fault zone, Weber and Davis counties, Utah , 1993 .

[88]  Xiaoye Liu,et al.  Airborne LiDAR for DEM generation: some critical issues , 2008 .