Direct Writing By Way of Melt Electrospinning

Melt electrospun fibers of poly(ϵ-caprolactone) are accurately deposited using an automated stage as the collector. Matching the translation speed of the collector to the speed of the melt electrospinning jet establishes control over the location of fiber deposition. In this sense, melt electrospinning writing can be seen to bridge the gap between solution electrospinning and direct writing additive manufacturing processes.

[1]  T. B. Green,et al.  The thermal effects on electrospinning of polylactic acid melts , 2006 .

[2]  Lauri Kettunen,et al.  Exploitation of electric field in controlling of nanofiber spinning process , 2007 .

[3]  C. Vaquette,et al.  Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. , 2011, Acta biomaterialia.

[4]  Andreas Greiner,et al.  Progress in the Field of Electrospinning for Tissue Engineering Applications , 2009, Advanced materials.

[5]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[6]  Darrell H. Reneker,et al.  Buckling of jets in electrospinning , 2007 .

[7]  Maurice Blount,et al.  The asymptotic structure of a slender dragged viscous thread , 2011, Journal of Fluid Mechanics.

[8]  Dietmar W. Hutmacher,et al.  Design, fabrication and characterization of PCL electrospun scaffolds—a review , 2011 .

[9]  Jonathan H P Dawes,et al.  Meandering instability of a viscous thread. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Liwei Lin,et al.  Near-field electrospinning. , 2006, Nano letters.

[11]  Darrell H. Reneker,et al.  Pendulum-like motion of straight electrified jets , 2008 .

[12]  John R. Lister,et al.  Stability of a dragged viscous thread: Onset of “stitching” in a fluid-mechanical “sewing machine” , 2006 .

[13]  C. V. van Blitterswijk,et al.  Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. , 2004, Biomaterials.

[14]  E. Vouga,et al.  Discrete viscous threads , 2010, SIGGRAPH 2010.

[15]  Federica Chiellini,et al.  Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol) , 2010 .

[16]  Andreas Greiner,et al.  High Precision Deposition Electrospinning of nanofibers and nanofiber nonwovens , 2009 .

[17]  R. Molloy,et al.  Factors influencing the small-scale melt spinning of poly(ε-caprolactone) monofilament fibres , 2003 .

[18]  D. Hutmacher,et al.  The return of a forgotten polymer : Polycaprolactone in the 21st century , 2009 .

[19]  J. A. Lewis Direct Ink Writing of 3D Functional Materials , 2006 .

[20]  J. Staniforth,et al.  The effect of molecular weight on the rheological and tensile properties of poly(ϵ-caprolactone) , 1996 .

[21]  Seeram Ramakrishna,et al.  Porous tubular structures with controlled fibre orientation using a modified electrospinning method , 2005 .

[22]  Martin Möller,et al.  Electrospinning with dual collection rings , 2005 .

[23]  Martin Möller,et al.  Electrospinning of polymer melts: Phenomenological observations , 2007 .

[24]  Michael P. Brenner,et al.  Electrospinning: A whipping fluid jet generates submicron polymer fibers , 2001 .

[25]  Michael S Sacks,et al.  Elastomeric Electrospun Polyurethane Scaffolds: The Interrelationship Between Fabrication Conditions, Fiber Topology, and Mechanical Properties , 2011, Advanced materials.

[26]  Jiang Chang,et al.  Patterning of Electrospun Fibers Using Electroconductive Templates , 2007 .

[27]  Cato T Laurencin,et al.  Electrospun nanofibrous structure: a novel scaffold for tissue engineering. , 2002, Journal of biomedical materials research.

[28]  A. Mikos,et al.  Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. , 2006, Biomacromolecules.

[29]  Jun Kameoka,et al.  A scanning tip electrospinning source for deposition of oriented nanofibres , 2003 .