GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations

This work addresses non‐linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a fixed grid with a Semi‐Lagrangian (SL) scheme and this for the entire distribution function. The 4D non‐linear drift‐kinetic version of the code already showns the interest of such a SL method which exhibits good properties of energy conservation in non‐linear regime as well as an accurate description of fine spatial scales. The code has been upgrated to run 5D simulations of toroidal ITG turbulence. Linear benchmarks and non‐linear first results prove that semi‐lagrangian codes can be a credible alternative for gyrokinetic simulations.

[1]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[2]  Hideo Sugama,et al.  Velocity–space structures of distribution function in toroidal ion temperature gradient turbulence , 2011 .

[3]  Shinji Tokuda,et al.  Global gyrokinetic simulation of ion temperature gradient driven turbulence in plasmas using a canonical Maxwellian distribution , 2003 .

[4]  Charlson C. Kim,et al.  Comparisons and physics basis of tokamak transport models and turbulence simulations , 2000 .

[5]  R. E. Waltz,et al.  An Eulerian gyrokinetic-Maxwell solver , 2003 .

[6]  Virginie Grandgirard,et al.  Defining an equilibrium state in global full-f gyrokinetic models , 2008 .

[7]  T. S. Hahm,et al.  Gyrokinetic simulations in general geometry and applications to collisional damping of zonal flows , 2000 .

[8]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[9]  X. Garbet,et al.  Interplay between transport barriers and density gradient , 2006 .

[10]  R. Hatzky,et al.  A revised δf algorithm for nonlinear PIC simulation , 2003 .

[11]  M. Rosenbluth,et al.  Dynamics of axisymmetric and poloidal flows in tokamaks , 1999 .

[12]  Marshall N. Rosenbluth,et al.  POLOIDAL FLOW DRIVEN BY ION-TEMPERATURE-GRADIENT TURBULENCE IN TOKAMAKS , 1998 .

[13]  Virginie Grandgirard,et al.  Intermittency in flux driven kinetic simulations of trapped ion turbulence , 2008 .

[14]  Laurent Villard,et al.  A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..

[15]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[16]  W. Dorland,et al.  Discrete Particle Noise in Particle-in-Cell Simulations of Plasma Microturbulence , 2005 .

[17]  Laurent Villard,et al.  On the definition of a kinetic equilibrium in global gyrokinetic simulations , 2006 .

[18]  Hideo Sugama,et al.  Abstract Submitted for the DPP05 Meeting of The American Physical Society Collisionless Damping of Zonal Flows in Helical Systems , 2012 .

[19]  Eric Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of Vlasov Equations , 1998 .