Globally convergent homotopy methods: a tutorial

The basic theory for probability one globally convergent homotopy algorithms was developed in 1976, and since then the theory, algorithms, and applications have considerably expanded. These are algorithms for solving nonlinear systems of (algebraic) equations, which are convergent for almost all choices of starting point. Thus they are globally convergent with probability one. They are applicable to Brouwer fixed point problems, certain classes of zero-finding problems, unconstrained optimization, linearly constrained optimization, nonlinear complementarity, and the discrezations of nonlinear two-point boundary value problems based on shooting, finite differences, collocation, and finite elements. A mathematical software package, HOMPACK, exists that implements several different strategies and handles both dense and sparse problems. Homotopy algorithms are closely related to ODE algorithms, and make heavy use of ODE techniques. Homotopy algorithms for some classes of nonlinear systems, such as polynomial systems, exhibit a large amount of coarse grain parallelism. These and other topics are discussed in a tutorial fashion.

[1]  Layne T. Watson,et al.  Hanging an elastic ring , 1981 .

[2]  L. T. Watson,et al.  Periodically Supported Heavy Elastic Sheet , 1983 .

[3]  Melvin R. Scott,et al.  Invariant imbedding and its applications to ordinary differential equations: An introduction , 1974 .

[4]  H. Keller Numerical Solution of Two Point Boundary Value Problems , 1976 .

[5]  Layne T. Watson,et al.  Computational experience with the Chow—Yorke algorithm , 1980, Math. Program..

[6]  L. T. Watson,et al.  Theory of the Constant Force Spring , 1980 .

[7]  L. Watson Solving the Nonlinear Complementarity Problem by a Homotopy Method , 1979 .

[8]  Jorge J. Moré,et al.  User Guide for Minpack-1 , 1980 .

[9]  Layne T. Watson,et al.  Solving Galerkin approximation to nonlinear two-point boundary value problems bya globally convergent homotopy method , 1987 .

[10]  L. Watson,et al.  HOMPACK: a suite of codes for globally convergent homotopy algorithms. Technical report No. 85-34 , 1985 .

[11]  Layne T. Watson,et al.  Solving Nonlinear Equations on a Hypercube , 1986 .

[12]  H. Schwetlick,et al.  Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen , 1978 .

[13]  B. Curtis Eaves,et al.  Homotopies for computation of fixed points on unbounded regions , 1972, Math. Program..

[14]  W. Rheinboldt,et al.  On steplength algorithms for a class of continuation methods siam j numer anal , 1981 .

[15]  Layne T. Watson,et al.  Fixed points of C2 maps , 1979 .

[16]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[17]  Layne T. Watson,et al.  Algorithm 555: Chow-Yorke Algorithm for Fixed Points or Zeros of C2 Maps [C5] , 1980, TOMS.

[18]  L. Watson,et al.  Solving spline-collocation approximations to nonlinear two-point boundary-value problems by a homoto , 1987 .

[19]  L. T. Watson,et al.  Free rotation of a circular ring about a diameter , 1983 .

[20]  K. Georg Numerical integration of the Davidenko equation , 1981 .

[21]  G. Golub,et al.  Linear least squares solutions by householder transformations , 1965 .

[22]  L. Watson,et al.  Squeezing of a viscous fluid between elliptic plates , 1979 .

[23]  R. W. Klopfenstein,et al.  Zeros of Nonlinear Functions , 1961, JACM.

[24]  L. Watson Solving Finite Difference Approximations to Nonlinear Two-Point Boundary Value Problems by a Homotopy Method , 1980 .

[25]  D. Faddeev,et al.  Computational methods of linear algebra , 1959 .

[26]  L. Watson An Algorithm That is Globally Convergent with Probability One for a Class of Nonlinear Two-Point Boundary Value Problems , 1979 .

[27]  M. Todd,et al.  Efficient Acceleration Techniques for Fixed Point Algorithms , 1978 .

[28]  G. Meyer On Solving Nonlinear Equations with a One-Parameter Operator Imbedding , 1968 .

[29]  K. Georg A Note on Stepsize Control for Numerical Curve Following , 1983 .

[30]  L. Watson Numerical study of porous channel flow in a rotating system by a homotopy method , 1981 .

[31]  Layne T. Watson,et al.  Micropolar flow past a stretching sheet , 1985 .

[32]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[33]  Philip E. Gill,et al.  Newton-type methods for unconstrained and linearly constrained optimization , 1974, Math. Program..

[34]  L. Watson Engineering applications of the Chow-Yorke algorithm , 1981 .

[35]  Chang Y. Wang,et al.  ON THE LARGE DEFORMATIONS OF C-SHAPED SPRINGS , 1980 .

[36]  Milan Kubicek,et al.  Algorithm 502: Dependence of Solution of Nonlinear Systems on a Parameter [C5] , 1976, TOMS.

[37]  A. Morgan A transformation to avoid solutions at infinity for polynomial systems , 1986 .

[38]  J. Yorke,et al.  Finding zeroes of maps: homotopy methods that are constructive with probability one , 1978 .

[39]  J. Yorke,et al.  A homotopy method for locating all zeros of a system of polynomials , 1979 .

[40]  L. Watson,et al.  A robust hybrid algorithm for computing multiple equilibrium solutions , 1985 .

[41]  S. Smale Convergent process of price adjust-ment and global newton methods , 1976 .

[42]  Chang Y. Wang,et al.  A homotopy method applied to elastica problems , 1981 .

[43]  L. Watson Numerical linear algebra aspects of globally convergent homotopy methods , 1986 .

[44]  L. Watson,et al.  Deceleration of a rotating disk in a viscous fluid , 1979 .

[45]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[46]  L. Watson,et al.  Optimal design by a homotopy method , 1980 .

[47]  Layne T. Watson,et al.  Overhang of a heavy elastic sheet , 1982 .

[48]  C. Y. Wang,et al.  Buckling, Postbuckling, and the Flow Through a Tethered Elastic Cylinder Under External Pressure , 1983 .

[49]  J. Junkins,et al.  Robust nonlinear least squares estimation using the Chow-Yorke homotopy method , 1984 .

[50]  L. T. Watson,et al.  Equilibrium of Heavy Elastic Cylindrical Shells , 1981 .

[51]  Herbert E. Scarf,et al.  The Approximation of Fixed Points of a Continuous Mapping , 1967 .

[52]  R. Mejia CONKUB: A conversational path-follower for systems of nonlinear equations , 1986 .

[53]  Layne T. Watson,et al.  Location of stable and unstable equilibrium configurations using a model trust region quasi-Newton method and tunnelling , 1985 .

[54]  Werner C. Rheinboldt,et al.  Algorithm 596: a program for a locally parameterized , 1983, TOMS.

[55]  Layne T. Watson,et al.  The equilibrium states of a heavy rotating column , 1983 .

[56]  B. Curtis Eaves,et al.  Homotopies for computation of fixed points , 1972, Math. Program..

[57]  Layne T. Watson,et al.  The circular leaf spring , 1981 .

[58]  Chang Y. Wang,et al.  Viscous flow between rotating discs with injection on the porous disc , 1979 .

[59]  J. Yorke,et al.  The homotopy continuation method: numerically implementable topological procedures , 1978 .

[60]  R. Saigal,et al.  On the Convergence Rate of Algorithms for Solving Equations that are Based on Methods of Complementary Pivoting , 1977, Math. Oper. Res..

[61]  Alexander P. Morgan A homotopy for solving polynomial systems , 1986 .

[62]  L. Watson A globally convergent algorithm for computing fixed points of C2 maps , 1979 .

[63]  Layne T. Watson,et al.  The elastic catenary , 1982 .

[64]  T. Y. Li,et al.  Fluid Dynamics of the Elliptic Porous Slider , 1978 .

[65]  R. Saigal An Efficient Procedure for Traversing Large Pieces in Fixed Point Algorithms , 1983 .

[66]  L. T. Watson,et al.  The fluid-filled cylindrical membrane container , 1981 .

[67]  Layne T. Watson,et al.  Micropolar flow past a porous stretching sheet , 1986 .

[68]  Layne T. Watson,et al.  Deceleration of a porous rotating disk in a viscous fluid , 1985 .

[69]  Wei H. Yang,et al.  METHODS FOR OPTIMAL ENGINEERING DESIGN PROBLEMS BASED ON GLOBALLY CONVERGENT METHODS , 1981 .

[70]  L. Watson,et al.  Tracking nonlinear equilibrium paths by a homotopy method , 1983 .

[71]  P. Boggs The Solution of Nonlinear Operator Equations by A-stable Integration Techniques , 1970 .

[72]  W. Rheinboldt Computation of Critical Boundaries on Equilibrium Manifolds , 1982 .

[73]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[74]  Layne T. Watson,et al.  A quasi-Newton versus a homotopy method for nonlinear structural analysis , 1983 .

[75]  J. Yorke,et al.  Piecewise Smooth Homotopies , 1983 .