Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting

[1]  Ling Zhang,et al.  Solar Light Driven Pure Water Splitting on Quantum Sized BiVO4 without any Cocatalyst , 2014 .

[2]  F. Toma,et al.  Electronic Structure of Monoclinic BiVO4 , 2014 .

[3]  Junwang Tang,et al.  Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. , 2014, Journal of the American Chemical Society.

[4]  Xiaobin Fan,et al.  Reduced Graphene Oxide (rGO)/BiVO4 Composites with Maximized Interfacial Coupling for Visible Lght Photocatalysis , 2014 .

[5]  N. Lewis,et al.  Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO_2/Ni Coatings , 2014 .

[6]  R. van de Krol,et al.  Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO₄ photoanodes decorated with Ag@SiO₂ core-shell nanoparticles. , 2014, Physical chemistry chemical physics : PCCP.

[7]  Tae-Wan Kim,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. , 2014 .

[8]  Ning Han,et al.  Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. , 2014, ACS nano.

[9]  T. Jaramillo,et al.  Nearly Total Solar Absorption in Ultrathin Nanostructured Iron Oxide for Efficient Photoelectrochemical Water Splitting , 2014 .

[10]  Mingfei Shao,et al.  Hierarchical Nanowire Arrays Based on ZnO Core−Layered Double Hydroxide Shell for Largely Enhanced Photoelectrochemical Water Splitting , 2014 .

[11]  Jingying Shi,et al.  Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. , 2014, Nanoscale.

[12]  Xiaolin Zheng,et al.  Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. , 2014, Nano letters.

[13]  D. Zhao,et al.  A Perspective on Mesoporous TiO2 Materials , 2014 .

[14]  S. Obregón,et al.  Monoclinic-Tetragonal Heterostructured BiVO4 by Yttrium-Doping with Improved Photocatalytic Activity , 2013 .

[15]  Gabriel Loget,et al.  Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. , 2013, Nano letters.

[16]  Joel W. Ager,et al.  Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting , 2013 .

[17]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[18]  A. Bard,et al.  Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. , 2013, Journal of the American Chemical Society.

[19]  Yiseul Park,et al.  Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation , 2013 .

[20]  G. Hwang,et al.  Structural phase-dependent hole localization and transport in bismuth vanadate , 2013 .

[21]  Yongjing Lin,et al.  Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. , 2013, Accounts of chemical research.

[22]  Zongfu Yu,et al.  Optical Absorption Enhancement in Freestanding GaAs Thin Film Nanopyramid Arrays , 2012 .

[23]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[24]  T. Furtak,et al.  Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2-BiVO4 electrodes. , 2012, Physical chemistry chemical physics : PCCP.

[25]  W. Choi,et al.  Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. , 2011, Physical chemistry chemical physics : PCCP.

[26]  T. Furtak,et al.  Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation , 2011 .

[27]  D. Gamelin,et al.  Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4. , 2011, Journal of the American Chemical Society.

[28]  Liejin Guo,et al.  Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting. , 2011, Nano letters.

[29]  Guodong Li,et al.  Macroporous V2O5−BiVO4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges , 2011 .

[30]  Kyoung-Shin Choi,et al.  Photodeposition of Co-Based Oxygen Evolution Catalysts on α-Fe2O3 Photoanodes , 2011 .

[31]  Craig A. Grimes,et al.  Aqueous Growth of Pyramidal-Shaped BiVO4 Nanowire Arrays and Structural Characterization: Application to Photoelectrochemical Water Splitting , 2010 .

[32]  Kyoung-Shin Choi,et al.  Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production , 2009, Proceedings of the National Academy of Sciences.

[33]  Matthew W. Kanan,et al.  Cobalt-phosphate oxygen-evolving compound. , 2009, Chemical Society reviews.

[34]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co 2 + , 2008 .

[35]  Fei Liu,et al.  Single Crystalline Boron Nanocones: Electric Transport and Field Emission Properties , 2007 .

[36]  Z. Zou,et al.  Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. , 2003, Chemical communications.

[37]  A. Kudo,et al.  Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. , 2002 .

[38]  A. Sleight,et al.  Crystal growth and structure of BiVO4 , 1979 .

[39]  R. S. Roth,et al.  Synthesis And Stability Of Bismutotantalite, Stibiotantalite And Chemically Similar AB04 Compounds , 1963 .