Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.

A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N-glycosylation (i.e. the presence of beta1,2-xylosylation and core alpha1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous beta1,2-xylosyltransferase (XylT) and alpha1,3-fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core alpha1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core alpha1,3-fucose residues in their N-glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N-glycan species without detectable xylose and alpha1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N-glycan structure.

[1]  K. Shitara,et al.  The Absence of Fucose but Not the Presence of Galactose or Bisecting N-Acetylglucosamine of Human IgG1 Complex-type Oligosaccharides Shows the Critical Role of Enhancing Antibody-dependent Cellular Cytotoxicity* , 2003, The Journal of Biological Chemistry.

[2]  David Passmore,et al.  Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor , 2006, Nature Biotechnology.

[3]  R. Kunert,et al.  Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. , 2007, Plant biotechnology journal.

[4]  A. Trkola,et al.  Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1 , 1996, Journal of virology.

[5]  F. Altmann,et al.  Unaltered complex N-glycan profiles in Nicotiana benthamiana despite drastic reduction of β1,2-N-acetylglucosaminyltransferase I activity , 2004, Glycoconjugate Journal.

[6]  M. Van Montagu,et al.  Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds , 2007, Proceedings of the National Academy of Sciences.

[7]  H. Katinger,et al.  Functional analysis of the broadly neutralizing human anti‐HIV‐1 antibody 2F5 produced in transgenic BY‐2 suspension cultures , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  H. Steinkellner,et al.  Generation of Arabidopsis thaliana plants with complex N‐glycans lacking β1,2‐linked xylose and core α1,3‐linked fucose , 2004 .

[9]  C. Stemmer,et al.  In vivo glyco‐engineered antibody with improved lytic potential produced by an innovative non‐mammalian expression system , 2007, Biotechnology journal.

[10]  S. Marillonnet,et al.  In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Van Montagu,et al.  High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. , 1999, European journal of biochemistry.

[12]  A. Trkola,et al.  Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies , 2005, Nature Medicine.

[13]  I. Wilson,et al.  Structural analysis of N-glycans from allergenic grass, ragweed and tree pollens: Core α1,3-linked fucose and xylose present in all pollens examined , 1998, Glycoconjugate Journal.

[14]  P. Christou,et al.  Plantibodies: applications, advantages and bottlenecks. , 2002, Current opinion in biotechnology.

[15]  L. Presta,et al.  Lack of Fucose on Human IgG1 N-Linked Oligosaccharide Improves Binding to Human FcγRIII and Antibody-dependent Cellular Toxicity* , 2002, The Journal of Biological Chemistry.

[16]  F. Altmann The Role of Protein Glycosylation in Allergy , 2006, International Archives of Allergy and Immunology.

[17]  Carola Engler,et al.  Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors , 2006, Proceedings of the National Academy of Sciences.

[18]  P. Lerouge,et al.  N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. , 1999, Glycobiology.

[19]  H. Katinger,et al.  A phase I trial with two human monoclonal antibodies (hMAb 2F5, 2G12) against HIV-1 , 2002, AIDS.

[20]  L. Reed,et al.  A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS , 1938 .

[21]  F. Altmann,et al.  Molecular cloning and heterologous expression of beta1,2-xylosyltransferase and core alpha1,3-fucosyltransferase from maize. , 2006, Phytochemistry.

[22]  R. Twyman,et al.  Antibody production in transgenic plants. , 2004, Methods in molecular biology.

[23]  P. Lerouge,et al.  Monoclonal C5-1 antibody produced in transgenic alfalfa plants exhibits a N-glycosylation that is homogenous and suitable for glyco-engineering into human-compatible structures. , 2003, Plant biotechnology journal.

[24]  P. Umaña,et al.  The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. , 2006, The Journal of biological chemistry.

[25]  P. Lerouge,et al.  Galactose-extended glycans of antibodies produced by transgenic plants , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Stadlmann,et al.  A Unique β1,3-Galactosyltransferase Is Indispensable for the Biosynthesis of N-Glycans Containing Lewis a Structures in Arabidopsis thaliana[W][OA] , 2007, The Plant Cell Online.