THERMUS - A thermal model package for ROOT

THERMUS is a package of C++ classes and functions allowing statistical-thermal model analyses of particle production in relativistic heavy-ion collisions to be performed within the ROOT framework of analysis. Calculations are possible within three statistical ensembles; a grand-canonical treatment of the conserved charges B, S and Q, a fully canonical treatment of the conserved charges, and a mixed-canonical ensemble combining a canonical treatment of strangeness with a grand-canonical treatment of baryon number and electric charge. THERMUS allows for the assignment of decay chains and detector efficiencies specific to each particle yield, which enables sensible fitting of model parameters to experimental data.

[1]  P. Braun-Munzinger,et al.  Maximum relative strangeness content in heavy-ion collisions around 30 A GeV , 2001, hep-ph/0106066.

[2]  M. Kaneta,et al.  Centrality dependence of thermal parameters deduced from hadron multiplicities in Au + Au collisions at s NN = 130 GeV , 2004, hep-ph/0409071.

[3]  F. Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[4]  Conditions for confinement and freeze-out , 2003, hep-ph/0308155.

[5]  Thermal equilibration and expansion in nucleus-nucleus collisions at the AGS , 1994, nucl-th/9410026.

[6]  Helmuth Spieler,et al.  Review of Particle Physics, 2008-2009 , 2000 .

[7]  Johann Rafelski,et al.  Strangeness in relativistic heavy ion collisions , 1986 .

[8]  J. Cleymans,et al.  Influence of impact parameter on thermal description of relativistic heavy ion collisions at (1-2)A GeV , 1998, nucl-th/9809027.

[9]  U. Heinz,et al.  Is there a low-pT “anomaly” in the pion momentum spectra from relativistic nuclear collisions? , 1991 .

[10]  J. Cleymans,et al.  UNIFIED DESCRIPTION OF FREEZE-OUT PARAMETERS IN RELATIVISTIC HEAVY ION COLLISIONS , 1998, nucl-th/9808030.

[11]  Hayes,et al.  Review of particle properties. , 1978, Physical review. D, Particles and fields.

[12]  J. Rafelski Strange anti-baryons from quark-gluon plasma , 1991 .

[13]  Spencer Miles Wheaton The development and application of THERMUS : a statistical-thermal model analysis package for ROOT , 2005 .

[14]  H. Caines Using strange hadrons as probes of dense matter , 2006 .

[15]  Comparison of Chemical Freeze-Out Criteria in Heavy-Ion Collisions , 2005, hep-ph/0511094.

[16]  K. Redlich,et al.  Statistical hadronization and strangeness enhancement from p-A to Pb-Pb collisions , 2001 .

[17]  J. Cleymans,et al.  Chemical and thermal freezeout parameters from 1-A/GeV to 200-A/GeV , 1999, nucl-th/9903063.

[18]  Wojciech Florkowski,et al.  THERMINATOR: THERMal heavy-IoN generATOR, , 2006, Comput. Phys. Commun..

[19]  Thermal and hadrochemical equilibration in nucleus-nucleus collisions at the SPS , 1995, nucl-th/9508020.

[20]  S. Mrenna,et al.  High-energy physics event generation with PYTHIA 6.1 , 2000, hep-ph/0010017.

[21]  J. Cleymans,et al.  Excluded volume effect and the quark-hadron phase transition , 1993 .

[22]  Statistical model description of K+ and K− production between 1–10 A·GeV , 2000, nucl-th/0004025.

[23]  S. U. Pandey,et al.  Particle ratios from central Pb + Pb collisions at the CERN SPS , 1997 .

[24]  W. Greiner,et al.  Excluded volume hadron gas model for particle number ratios in A+A collisions , 1997, nucl-th/9711062.

[25]  Jean Letessier,et al.  SHARE: Statistical hadronization with resonances , 2005, Comput. Phys. Commun..

[26]  U. Heinz,et al.  Rapidity dependence of strange particle ratios in nuclear collisions , 1995 .

[27]  A. Andronic,et al.  Hadron production in central nucleus-nucleus collisions at chemical freeze-out , 2005, nucl-th/0511071.

[28]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[29]  Jean Letessier,et al.  SHAREv2: fluctuations and a comprehensive treatment of decay feed-down , 2006, Comput. Phys. Commun..

[30]  W. Broniowski,et al.  Description of strange particle production in Au+Au collisions of √(s NN )=130 GeV in a single-freeze-out model , 2002 .

[31]  F. Becattini,et al.  Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions , 2005, hep-ph/0511092.

[32]  Chemical equilibration of strangeness , 1997, nucl-th/9707020.

[33]  F. Becattini,et al.  On chemical equilibrium in nuclear collisions , 1998 .

[34]  Dietrick E. Thomsen Quark-Gluon Plasma , 1986 .

[35]  P. Braun-Munzinger,et al.  Chemical equilibration in Pb+Pb collisions at the SPS , 1999, nucl-th/9903010.

[36]  Geneva,et al.  Chemical equilibrium study in nucleus-nucleus collisions at relativistic energies , 2003, hep-ph/0310049.

[37]  M. Kaneta,et al.  On chemical equilibrium in high-energy heavy-ion collisions , 2001 .

[38]  H. Stöcker,et al.  Excluded volume effect for the nuclear matter equation of state , 1991 .

[39]  R. Malina,et al.  Particle production in central Pb+Pb collisions at 158A GeV/c , 2002 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  B. Hippolyte Strange prospects for LHC energies , 2007 .

[42]  P. Steinberg,et al.  System-size dependence of strangeness saturation , 2003, hep-ph/0311020.

[43]  D. K. Srivastava,et al.  Transverse energy per charged particle and freeze-out criteria in heavy-ion collisions , 2007, 0708.0914.