Laser-spectrometric gas analysis: CO2–TDLAS at 2 µm

Employing direct absorption spectroscopy and using a spectrometer comprising a single-pass and a multipass white cell, we probed the R(12) line of carbon dioxide (CO2) in the combination band around 2??m. Gravimetric gas standards containing CO2, between 300 and 60?000??mol mol?1?(0.03% to 6%), in N2?were quantified by means of the TILSAM method. The spectrometric results were compared with the gravimetric reference values. We describe our implementation of the ?Guide to the Expression of Uncertainty in Measurements? to infrared laser-spectrometric gas analysis. Data quality objectives are addressed by uncertainty and traceability flags. Uncertainty budgets are presented to show the quality of the results and to demonstrate software-assisted uncertainty assessment. The relative standard uncertainties of the spectrometrically measured CO2?amount fractions at, e.g., ambient levels of 360??mol mol?1?and at exhaled breath gas levels of 50?mmol mol?1?were 1.4% and 0.7%, respectively. Our detection limit was 2.2??mol mol?1. The reproducibility of individual results was in the ?1% range. Furthermore, we measured collisional broadening coefficients of the R(12) line of CO2?at 4987.31?cm?1. The relative standard uncertainties of the measured self-, nitrogen-, oxygen- and air-broadening coefficients were in the ?1.7% range.

[1]  Richard N Zare,et al.  Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath. , 2002, Analytical chemistry.

[2]  T. Gillam,et al.  High-accuracy stable gas flow dilution using an internally calibrated network of critical flow orifices , 2010 .

[3]  Volker Ebert,et al.  Laser-based measurements of line strength, self- and pressure-broadening coefficients of the H35Cl R(3) absorption line in the first overtone region for pressures up to 1 MPa , 2010 .

[4]  Volker Ebert,et al.  Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants , 2002 .

[5]  Ronald K. Hanson,et al.  Measurements of high-pressure CO2 absorption near 2.0 μm and  implications on tunable diode laser sensor design , 2009 .

[6]  I. M. Grigoriev,et al.  Air pressure broadening and shifting of high-J lines of (00011) ← (00001) band of 12C16O2 , 2010 .

[7]  G. Berden,et al.  Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .

[8]  Frank K. Tittel,et al.  Development of a compact quantum cascade laser spectrometer for field measurements of CO2 isotopes , 2005 .

[9]  C. Camy‐Peyret,et al.  Isotopic composition and concentration measurements of atmospheric CO2 with a diode laser making use of correlations between non-equivalent absorption cells , 2010 .

[10]  Lauri Halonen,et al.  Direct detection of acetylene in air by continuous wave cavity ring-down spectroscopy , 2010 .

[11]  Juergen Wolfrum,et al.  SIMULTANEOUS DIODE-LASER-BASED IN SITU DETECTION OF MULTIPLE SPECIES AND TEMPERATURE IN A GAS-FIRED POWER PLANT , 2000 .

[12]  C. Boulet,et al.  History and future of the molecular spectroscopic databases , 2005 .

[13]  A. Kosterev,et al.  Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems , 2005 .

[14]  Gerard Wysocki,et al.  Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide. , 2004, Applied optics.

[15]  Volker Ebert,et al.  Absolute diode laser-based in situ detection of HCl in gasification processes , 2010 .

[16]  John Tulip,et al.  Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques , 2009 .

[17]  Volker Ebert,et al.  TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames , 2009 .

[18]  Michael Berglund,et al.  Isotopic compositions of the elements 2009 (IUPAC Technical Report) , 2011 .

[19]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[20]  J. Wolfrum,et al.  Laser‐Based Combustion Diagnostics , 2006 .

[21]  O. Vasyutinskii,et al.  Non-invasive and isotope-selective laser-induced fluorescence spectroscopy of nitric oxide in exhaled air , 2007, Journal of breath research.

[22]  Franz Schreier,et al.  The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies , 2008 .

[23]  P Hering,et al.  Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide. , 2005, Optics letters.

[24]  A. Castrillo,et al.  The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models. , 2009, The Journal of chemical physics.

[25]  A Castrillo,et al.  Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser. , 2006, Optics letters.

[26]  J. Hodgkinson,et al.  Methane-specific gas detectors: the effect of natural gas composition , 2010 .

[27]  J. Faist,et al.  Quantum cascade laser: a unipolar intersubband semiconductor laser , 1994, Proceedings of IEEE 14th International Semiconductor Laser Conference.

[28]  Graham M. Gibson,et al.  Portable optical spectroscopy for accurate analysis of ethane in exhaled breath , 2007 .

[29]  R. Peverall,et al.  Laser spectroscopy on volatile sulfur compounds: possibilities for breath analysis , 2011, Journal of breath research.

[30]  T. Fritsch,et al.  Infrared laser spectroscopy for online recording of exhaled carbon monoxide—a progress report , 2007, Journal of breath research.

[31]  O. Korablev,et al.  Diode laser spectroscopy of H2O and CO2 in the 1.877-μm region for the in situ monitoring of the Martian atmosphere , 2006 .

[32]  William H. Press,et al.  Numerical recipes , 1990 .

[33]  Livio Gianfrani,et al.  Advances in laser-based isotope ratio measurements: selected applications , 2008 .

[34]  B. Parvitte,et al.  Diode laser spectroscopy of CO2 in the region for the in situ sensing of the middle atmosphere , 2004 .

[35]  Thierry Gonthiez,et al.  Multispecies breath analysis faster than a single respiratory cycle by optical-feedback cavity-enhanced absorption spectroscopy. , 2009, Journal of biomedical optics.

[36]  Comparison and assessment of procedures for calculating the R(12) line strength of the ν1 + 2 ν2 + ν3 band of CO2. , 2011, The Journal of chemical physics.

[37]  Gerardo J. Padilla-Víquez,et al.  Traceable $\hbox{CO}_{2}\hbox{-}{\rm R}(12)$ Line Intensity for Laser-Spectroscopy-Based Gas Analysis Near 2 $\mu \hbox{m}$ , 2007, IEEE Transactions on Instrumentation and Measurement.

[38]  Anne Marsden,et al.  International Organization for Standardization , 2014 .

[39]  Ronald K. Hanson,et al.  Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers , 2009 .

[40]  J. Delgado,et al.  Amount of Carbon Dioxide Fraction Determination by TDLAS: Evidences for a Potential Primary Method Directly Applied in Gas Analysis , 2006 .

[41]  R. Martinelli,et al.  Measurement of (12)CO(2):(13)CO(2) ratios for medical diagnostics with 1.6-µm distributed-feedback semiconductor diode lasers. , 1993, Applied optics.

[42]  Chuji Wang,et al.  Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits , 2009, Sensors.

[43]  Michael E. Webber,et al.  Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm , 1998 .

[44]  Bertrand Parvitte,et al.  Laser diode spectroscopy of the H2O isotopologues in the 2.64 μm region for the in situ monitoring of the Martian atmosphere , 2008 .

[45]  E. Crosson,et al.  A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor , 2008 .

[46]  Dc Daan Schram,et al.  Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature , 2008 .

[47]  D. Schiel,et al.  Measurement of CO amount fractions using a pulsed quantum-cascade laser operated in the intrapulse mode , 2011 .

[48]  J. Carney,et al.  Water temperature and concentration measurements within the expanding blast wave of a high explosive , 2011 .

[49]  Tawee Tanbun-Ek,et al.  H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57 μm , 1995 .