Non-linear oscillations in a passive magnetic suspension

Abstract The paper analyzes the dynamical behavior of a single degree of freedom (SDOF) passive magnetic suspension realized coupling traditional springs with rare-earth permanent magnets. The natural frequency of the device depends weakly on the mass due to the strongly non-linear magnetic repulsive force. The system exhibits features typical of non-linear oscillators, such as jump phenomena and multivalued frequency–response curves. In fact, for appropriate combinations of the parameters, multiple steady-state solutions appear. The periodic stationary solutions and the stability properties are investigated numerically and with a semi-analytical approach. Finally, comparisons with experimental results have been reported.

[1]  R. Bassani,et al.  Study of Conic Permanent Magnet Bearings , 2001 .

[2]  Mitsunori Aizawa,et al.  Repulsive Magnetic Bearing Using a Piezoelectric Actuator for Stabilization ( Magnetic Bearing) , 2003 .

[3]  A. Tondl Some problems of rotor dynamics , 1965 .

[4]  Zhuoxiang Ren,et al.  Comparison of different force calculation methods in 3D finite element modelling , 1994 .

[5]  J. Coey Permanent magnet applications , 2002 .

[6]  H. S. Nagaraj,et al.  Investigation of Magnetic Fields and Forces Arising in Open-Circuit-Type Magnetic Bearings , 1988 .

[7]  David L. Trumper,et al.  High-precision magnetic levitation stage for photolithography , 1998 .

[8]  Z. J. Cendes,et al.  Design and analysis of a permanent magnet axial coupling using 3D finite element field computations , 1994 .

[9]  K. Nagaya,et al.  A noncontact permanent magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulators , 1995 .

[10]  Jie Gu,et al.  Six-axis nanopositioning device with precision magnetic levitation technology , 2004, IEEE/ASME Transactions on Mechatronics.

[11]  Lester R. Moskowitz,et al.  Permanent magnet design and application handbook , 1976 .

[12]  Alessandro Vigliani,et al.  Static behaviour of magneto-elastic forces , 2003 .

[13]  Etsunori Fujita,et al.  New Vibration System using Magneto-Spring , 1997 .

[14]  Tadahiko Shinshi,et al.  A Linear Table System Using Repulsive Forces of Permanent Magnets. Static Stiffness of Levitated Table and its Stabilization Using Two-Axis Control. , 2001 .

[15]  K. Nagaya,et al.  A method for obtaining a linear spring for a permanent magnet levitation system using electromagnetic control , 1995 .

[16]  M. Ito,et al.  Characteristics of ring permanent magnet bearing , 1984 .

[17]  G. Akoun,et al.  3D analytical calculation of the forces exerted between two cuboidal magnets , 1984 .

[18]  J.-P. Yonnet,et al.  Permanent magnet bearings and couplings , 1981 .

[19]  W. Müller Comparison of different methods of force calculation , 1990 .

[21]  S. Earnshaw On the Nature of the Molecular Forces which Regulate the Constitution of the Luminiferous Ether , .

[22]  J. Coey Rare-earth iron permanent magnets , 1996 .

[23]  Hannes Bleuler A Survey of Magnetic Levitation and Magnetic Bearing Types , 1992 .

[24]  J. Yonnet,et al.  Stacked structures of passive magnetic bearings , 1991 .

[25]  Bojan Štumberger,et al.  Passive magnetic bearing , 2004 .

[26]  L P Poberezhskii,et al.  OPTIMIZATION OF MAGNETIC SUSPENSION AND ANALYSIS OF VEHICLE DYNAMICS , 1981 .

[27]  P. Campbell Permanent Magnet Materials and their Application: Applications , 1994 .

[28]  Nicholas A J Lieven,et al.  Proceedings of the International Modal Analysis Conference (IMAC) , 2001 .

[29]  Yuji Ishino,et al.  Development of a three-axis active vibration isolation system using zero-power magnetic suspension , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[30]  J. Yonnet,et al.  Analytical calculation of permanent magnet couplings , 1993 .

[31]  Alessandro Vigliani,et al.  Dynamics of suspensions with rare-earth permanent magnets , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[32]  Jean-Paul Yonnet,et al.  A compact magnetic suspension with only one axis control , 1994 .

[33]  R. Gerber,et al.  Sensors for magnetic bearings , 1993 .

[34]  Edward P. Furlani,et al.  A formula for the levitation force between magnetic disks , 1993 .

[35]  Rong-Fong Fung,et al.  Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass , 2005 .

[36]  Ezio Puppin,et al.  Vibration isolation with magnet springs , 2002 .

[37]  Alfred L. Wicks,et al.  Electromagnetic tuned dynamic vibration absorber : Experimental characterization , 2001 .

[38]  Dynamics of a Magnetically Levitated Table with Hybrid Magnets , 2001 .

[39]  Chong-Won Lee,et al.  Design and control of active magnetic bearing system with Lorentz force-type axial actuator , 2006 .

[40]  K X Qian,et al.  New concepts and new design of permanent maglev rotary artificial heart blood pumps. , 2006, Medical engineering & physics.

[41]  Jed Ludlow,et al.  A magnetic suspension theory and its application to the HeartQuest ventricular assist device. , 2002, Artificial organs.

[42]  G. Temple Static and Dynamic Electricity , 1940, Nature.

[43]  Tadahiko Shinshi,et al.  Stabilization of one degree-of-freedom control type levitation table with permanent magnet repulsive forces , 2003 .

[44]  Lewi Tonks,et al.  Note on earnshaw's theorem , 1940, Electrical Engineering.

[45]  F. Moon,et al.  Magneto-Solid Mechanics , 1986 .

[46]  Weipu Jia,et al.  Static Stability Analysis for a Novel Permanent Magnetic Suspension Laser Beam Scanner , 2002 .

[47]  A. Zander,et al.  A multipole array magnetic spring , 2005, IEEE Transactions on Magnetics.

[48]  Kosuke Nagaya,et al.  A Rotary Magnetic Damper or Brake Consisting of a Number of Sector Magnets and a Circular Conductor , 1989 .