Land Cover Classification Using Integrated Spectral, Temporal, and Spatial Features Derived from Remotely Sensed Images

Obtaining accurate and timely land cover information is an important topic in many remote sensing applications. Using satellite image time series data should achieve high-accuracy land cover classification. However, most satellite image time-series classification methods do not fully exploit the available data for mining the effective features to identify different land cover types. Therefore, a classification method that can take full advantage of the rich information provided by time-series data to improve the accuracy of land cover classification is needed. In this paper, a novel method for time-series land cover classification using spectral, temporal, and spatial information at an annual scale was introduced. Based on all the available data from time-series remote sensing images, a refined nonlinear dimensionality reduction method was used to extract the spectral and temporal features, and a modified graph segmentation method was used to extract the spatial features. The proposed classification method was applied in three study areas with land cover complexity, including Illinois, South Dakota, and Texas. All the Landsat time series data in 2014 were used, and different study areas have different amounts of invalid data. A series of comparative experiments were conducted on the annual time-series images using training data generated from Cropland Data Layer. The results demonstrated higher overall and per-class classification accuracies and kappa index values using the proposed spectral-temporal-spatial method compared to spectral-temporal classification methods. We also discuss the implications of this study and possibilities for future applications and developments of the method.

[1]  François Waldner,et al.  Automated annual cropland mapping using knowledge-based temporal features , 2015 .

[2]  Ludmila I. Kuncheva,et al.  PCA Feature Extraction for Change Detection in Multidimensional Unlabeled Data , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[3]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[4]  R. Prim Shortest connection networks and some generalizations , 1957 .

[5]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[6]  G. Meehl,et al.  The Importance of Land-Cover Change in Simulating Future Climates , 2005, Science.

[7]  Lawrence Ong,et al.  Landsat-8 Operational Land Imager (OLI) Radiometric Performance On-Orbit , 2015, Remote. Sens..

[8]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[9]  David Morin,et al.  Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series , 2017, Remote. Sens..

[10]  Lin Yan,et al.  Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction , 2015 .

[11]  William Stafford Noble,et al.  Support vector machine , 2013 .

[12]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[13]  A. Brenning,et al.  Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile , 2015 .

[14]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[15]  M. D. A. Rounsevella,et al.  Future scenarios of European agricultural land use II . Projecting changes in cropland and grassland , 2005 .

[16]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[17]  T. Sakamoto,et al.  A crop phenology detection method using time-series MODIS data , 2005 .

[18]  Nicholas J. Tate,et al.  A critical synthesis of remotely sensed optical image change detection techniques , 2015 .

[19]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[20]  Thomas L. Ainsworth,et al.  Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Zhengwei Yang,et al.  CropScape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support , 2012 .

[22]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[23]  Edward J. Knight,et al.  Landsat-8 Operational Land Imager Design, Characterization and Performance , 2014, Remote. Sens..

[24]  Y. Zhang,et al.  A REVIEW ON IMAGE SEGMENTATION TECHNIQUES WITH REMOTE SENSING PERSPECTIVE , 2010 .

[25]  Chengquan Huang,et al.  Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges , 2012, Int. J. Digit. Earth.

[26]  Joydeep Ghosh,et al.  Improved Nonlinear Manifold Learning for Land Cover Classification via Intelligent Landmark Selection , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[27]  C. Woodcock,et al.  An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data , 1996 .

[28]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[29]  Bor-Chen Kuo,et al.  Nonparametric weighted feature extraction for classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[30]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[31]  J. Qi,et al.  Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization , 2009 .

[32]  Melba M. Crawford,et al.  Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning , 2014, IEEE Signal Processing Magazine.

[33]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Hyperspectral Image Segmentation Using S , 2022 .

[34]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[35]  Jorge S. Marques,et al.  Selecting Landmark Points for Sparse Manifold Learning , 2005, NIPS.

[36]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[37]  David M. Johnson,et al.  A multi-resolution approach to national-scale cultivated area estimation of soybean , 2017 .

[38]  Kilian Q. Weinberger,et al.  Spectral Methods for Dimensionality Reduction , 2006, Semi-Supervised Learning.

[39]  K. K. Mayo,et al.  Monitoring land-cover change by principal component analysis of multitemporal Landsat data. , 1980 .

[40]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[41]  Michael A. Wulder,et al.  Landsat continuity: Issues and opportunities for land cover monitoring , 2008 .

[42]  Christopher Conrad,et al.  Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines , 2013 .

[43]  Joanne C. White,et al.  Optical remotely sensed time series data for land cover classification: A review , 2016 .

[44]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Farhad Samadzadegan,et al.  Comparative Study of Intrinsic Dimensionality Estimation and Dimension Reduction Techniques on Hyperspectral Images Using K-NN Classifier , 2012, IEEE Geoscience and Remote Sensing Letters.

[46]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[47]  D. Roy,et al.  Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD) , 2014 .

[48]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[49]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[50]  张振跃,et al.  Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment , 2004 .

[51]  Jiyuan Liu,et al.  Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms , 2015 .

[52]  Xianhong Xie,et al.  Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data , 2014 .

[53]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[54]  W. Verhoef,et al.  Reconstructing cloudfree NDVI composites using Fourier analysis of time series , 2000 .

[55]  Kathleen Neumann,et al.  Challenges in using land use and land cover data for global change studies , 2011 .

[56]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[57]  David Zhang,et al.  A survey of graph theoretical approaches to image segmentation , 2013, Pattern Recognit..

[58]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[59]  Jinsong Deng,et al.  PCA‐based land‐use change detection and analysis using multitemporal and multisensor satellite data , 2008 .

[60]  Bor-Chen Kuo,et al.  Feature Mining for Hyperspectral Image Classification , 2013, Proceedings of the IEEE.

[61]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[62]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[63]  U. Benz,et al.  Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information , 2004 .

[64]  T. Mitchell Aide,et al.  A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America , 2010 .

[65]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[66]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[67]  David P. Roy,et al.  Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project , 2011 .

[68]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[69]  Limin Wang,et al.  Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[70]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[71]  Conghe Song,et al.  Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record , 2013 .

[72]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[73]  Li Ma,et al.  Exploring Nonlinear Manifold Learning for Classification of Hyperspectral Data , 2011 .

[74]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[75]  Yi Guo,et al.  A Modified Locality-Preserving Projection Approach for Hyperspectral Image Classification , 2016, IEEE Geoscience and Remote Sensing Letters.

[76]  Zhengwei Yang,et al.  Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program , 2011 .

[77]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[78]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[79]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[80]  François Petitjean,et al.  Satellite Image Time Series Analysis Under Time Warping , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[81]  C. Woodcock,et al.  Continuous change detection and classification of land cover using all available Landsat data , 2014 .

[82]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[83]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[84]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[85]  Ching Y. Suen,et al.  Application of majority voting to pattern recognition: an analysis of its behavior and performance , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[86]  Olufemi A. Omitaomu,et al.  Weighted dynamic time warping for time series classification , 2011, Pattern Recognit..

[87]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[88]  Marinos Kavouras,et al.  An overview of 21 global and 43 regional land-cover mapping products , 2015 .

[89]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[90]  Peng Gong,et al.  A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data , 1992 .

[91]  M. Pal,et al.  Random forests for land cover classification , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[92]  Antonio Di Gregorio,et al.  Land cover classification system (LCCS): classification concepts and user manual for software version 1.0 , 2000 .

[93]  Giles M. Foody,et al.  Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification , 2004 .

[94]  Ke-Sheng Cheng,et al.  Assessing Uncertainty in LULC Classification Accuracy by Using Bootstrap Resampling , 2016 .

[95]  James R. Lersch,et al.  Segmentation of multiband imagery using minimum spanning trees , 1996, Defense + Commercial Sensing.

[96]  Thomas R. Loveland,et al.  The IGBP-DIS global 1 km land cover data set , 1997 .

[97]  P. Hostert,et al.  Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape , 2015 .

[98]  Thomas L. Ainsworth,et al.  Manifold coordinate representations of hyperspectral imagery: Improvements in algorithm performance and computational efficiency , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[99]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[100]  Thomas R. Loveland,et al.  A review of large area monitoring of land cover change using Landsat data , 2012 .

[101]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[102]  Jin Chen,et al.  Global land cover mapping at 30 m resolution: A POK-based operational approach , 2015 .

[103]  M. Bauer,et al.  Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing , 2005 .

[104]  Jon Atli Benediktsson,et al.  Multiple Spectral–Spatial Classification Approach for Hyperspectral Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[105]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[106]  J. Shan,et al.  Principal Component Analysis for Hyperspectral Image Classification , 2002 .

[107]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[108]  Thomas L. Ainsworth,et al.  Exploiting manifold geometry in hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.