Multilevel finite-difference model for three-dimensional hydrodynamic circulation

A three-dimensional finite-difference multilevel hydrodynamic model is developed using an explicit scheme on a staggered grid. The model has been tested against four cases, namely (i) wind-induced circulation (ii) density-driven circulation (iii) seiche oscillation in a closed basin and (iv) tide-induced circulation in a open channel. The results obtained in the present study compare well with those obtained from the corresponding analytical solutions under idealised conditions for the above four cases. The model was also tested against the case of circulation induced by wind and Coriolis force and the results obtained are compared with the results of Davies and Owen (1979).