Transient thermo-elastic waves in a half-space with thermal relaxation

We use the Cagniard-De Hoop method to develop the displacement and temperature fields in a half-space subjected on its free surface to an instantaneously applied heat source. We include in our analysis the thermal relaxation time of heat conduction, which insures that the termal waves propagate with a finite signal speed. We express our solution in terms of a small thermo-elastic coupling coefficient, and obtain explicit expressions for the wave-speeds and wave-amplitudes. Due to the existence of the thermal damping, we give only the short-time solution. We then present numerical results for the dilatation and the temperature so as to illustrate the salient features of the problem.ZusammenfassungDie Autoren benutzen die Methode von Cagniard-De Hoop zur Ermittlung des Verschiebungs-und des Temperaturfeldes in einem elastischen Halbraum unter dem Einfluß einer an der freien Oberfläche plötzlich angebrachten Wärmequelle. Sie berücksichtigen dabei die Relaxationszeit der Wärmeleitung, welche eine endliche Fortpflanzungsgeschwindigkeit der Wärmewellen garantiert. Die Lösung wird in einem kleinen thermoelastischen Koppelungskoeffizienten ausgedrückt, und es werden explizite Ausdrücke für die Fortpflanzungsgeschwindigkeiten und Wellenamplituden gegeben. Mit Rücksicht auf die thermische Dämpfung werden nur kurzfristige Lösungen betrachtet. Schließlich werden numerische Resultate für die Dilatation und die Temperatur angegeben, um die wesentlichen Eigenschaften des Problems zu illustrieren.

[1]  F. S. Lamb,et al.  On the Propagation of Tremors over the Surface of an Elastic Solid , 1904 .

[2]  S. Nemat-Nasser,et al.  Thermoelastic waves in solids with thermal relaxation , 1971 .

[3]  Lev Davidovich Landau,et al.  THE THEORY OF SUPERFLUIDITY OF HELIUM II , 1971 .

[4]  E. A. Kraut,et al.  Advances in the theory of anisotropic elastic wave propagation , 1963 .

[5]  R. B. Dingle LETTERS TO THE EDITOR: Derivation of the Velocity of Second Sound from Maxwell's Equation of Transfer , 1952 .

[6]  K. R. Atkins,et al.  The velocity of second sound below 1 ° K , 1950 .

[7]  C. H. Dix,et al.  Reflection and Refraction of Progressive Seismic Waves , 1963 .

[8]  D. J. Channin,et al.  Heat Pulses in NaF: Onset of Second Sound , 1970 .

[9]  J. Wilks,et al.  III. Second sound and the thermo-mechanical effect at very low temperatures , 1952 .

[10]  J. Wilks,et al.  The velocity of second sound in liquid helium near the absolute zero , 1951 .

[11]  T. F. McNelly,et al.  Second Sound in NaF , 1970 .

[12]  Robert A. Guyer,et al.  Temperature pulses in dielectric solids , 1968 .

[13]  J. Achenbach The influence of heat conduction on propagating stress jumps , 1968 .

[14]  Robert A. Guyer,et al.  SECOND SOUND IN SOLID HELIUM , 1966 .

[15]  T. Karlsson,et al.  Lamb's problem for an inhomogeneous medium with constant velocities of propagation , 1963 .

[16]  M. Gurtin,et al.  A general theory of heat conduction with finite wave speeds , 1968 .

[17]  D. C. Gakenheimer,et al.  Transient Excitation of an Elastic Half Space by a Point Load Traveling on the Surface , 1969 .

[18]  H. Lord,et al.  A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY , 1967 .

[19]  Y. Fung Foundations of solid mechanics , 1965 .

[20]  A. T. Hoop,et al.  A modification of cagniard’s method for solving seismic pulse problems , 1960 .

[21]  M. Chester Second Sound in Solids , 1963 .

[22]  G. Power,et al.  Approximate subsonic gas flows under assigned boundary conditions , 1959 .

[23]  Graham Hoyle,et al.  The Leap of the Grasshopper , 1958 .