Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts

[1]  M. Marahiel,et al.  Cyclophilin and trigger factor from Bacillus subtilis catalyze in vitro protein folding and are necessary for viability under starvation conditions. , 1998, Biochemistry.

[2]  S. Raina,et al.  A new heat‐shock gene, ppiD, encodes a peptidyl–prolyl isomerase required for folding of outer membrane proteins in Escherichia coli , 1998, The EMBO journal.

[3]  G. Fischer,et al.  Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. , 1998, Biochemistry.

[4]  M. Rapé,et al.  Recognition of protein substrates by the prolyl isomerase trigger factor is independent of proline residues. , 1998, Journal of molecular biology.

[5]  A. Means,et al.  The mitotic peptidyl‐prolyl isomerase, Pin1, interacts with Cdc25 and Plx1 , 1998, The EMBO journal.

[6]  M. Kirschner,et al.  The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. , 1998, Genes & development.

[7]  M. Marahiel,et al.  The 20kD protein of human [U4/U6.U5] tri-snRNPs is a novel cyclophilin that forms a complex with the U4/U6-specific 60kD and 90kD proteins. , 1998, RNA.

[8]  M. Matzuk,et al.  Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12 , 1998, Nature.

[9]  A. Ménez,et al.  Engineering cyclophilin into a proline-specific endopeptidase , 1998, Nature.

[10]  M. Kirschner,et al.  Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. , 1997, Science.

[11]  K Dolinski,et al.  All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  F. Schmid,et al.  Catalysis of protein folding by parvulin. , 1997, Journal of molecular biology.

[13]  M. Schutkowski,et al.  A protease-free assay for peptidyl prolyl cis/trans isomerases using standard peptide substrates. , 1997, Analytical biochemistry.

[14]  F. Schmid,et al.  Modular structure of the trigger factor required for high activity in protein folding. , 1997, Journal of molecular biology.

[15]  R. Ranganathan,et al.  Structural and Functional Analysis of the Mitotic Rotamase Pin1 Suggests Substrate Recognition Is Phosphorylation Dependent , 1997, Cell.

[16]  A. Pahl,et al.  Fit for life? Evolution of chaperones and folding catalysts parallels the development of complex organisms. , 1997, Cell stress & chaperones.

[17]  D. Missiakas,et al.  Minireview Protein Folding in the Bacterial Periplasm , 1997 .

[18]  Y. Zhao,et al.  Cyclophilin A complexed with a fragment of HIV-1 gag protein: insights into HIV-1 infectious activity. , 1997, Structure.

[19]  F. Schmid,et al.  Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding , 1997, The EMBO journal.

[20]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[21]  C. Gross,et al.  SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. , 1996, Genes & development.

[22]  S. Lindquist,et al.  A Cyclophilin Function in Hsp90-Dependent Signal Transduction , 1996, Science.

[23]  L Timmermann,et al.  The mechanism of action of cyclosporin A and FK506. , 1996, Clinical immunology and immunopathology.

[24]  S. Fleischer,et al.  Selective Binding of FKBP12.6 by the Cardiac Ryanodine Receptor* , 1996, The Journal of Biological Chemistry.

[25]  A. Marks Cellular functions of immunophilins. , 1996, Physiological reviews.

[26]  H. Lütcke,et al.  Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Kolter,et al.  SurA assists the folding of Escherichia coli outer membrane proteins , 1996, Journal of bacteriology.

[28]  A. Carrello,et al.  Cyclophilin 40 (CyP-40), Mapping of Its hsp90 Binding Domain and Evidence That FKBP52 Competes with CyP-40 for hsp90 Binding (*) , 1996, The Journal of Biological Chemistry.

[29]  A. Goldberg,et al.  Trigger factor is involved in GroEL‐dependent protein degradation in Escherichia coli and promotes binding of GroEL to unfolded proteins. , 1995, The EMBO journal.

[30]  J. Hacker,et al.  Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells , 1995, Infection and immunity.

[31]  E. A. O'neill,et al.  A Novel FK506 Binding Protein Can Mediate the Immunosuppressive Effects of FK506 and Is Associated with the Cardiac Ryanodine Receptor (*) , 1995, The Journal of Biological Chemistry.

[32]  J. Mornon,et al.  Trigger factor, one of the Escherichia coli chaperone proteins, is an original member of the FKBP family , 1995, FEBS letters.

[33]  D. Kern,et al.  Kinetic analysis of cyclophilin-catalyzed prolyl cis/trans isomerization by dynamic NMR spectroscopy. , 1995, Biochemistry.

[34]  M. Kleerebezem,et al.  Characterization of an Escherichia coli rotA mutant, affected in periplasmic peptidyl‐prolyl cis/trans isomerase , 1995, Molecular microbiology.

[35]  F. Schmid,et al.  A ribosome‐associated peptidyl‐prolyl cis/trans isomerase identified as the trigger factor. , 1995, The EMBO journal.

[36]  A. Matouschek,et al.  Cyclophilin catalyzes protein folding in yeast mitochondria. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Clardy The chemistry of signal transduction. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Luban,et al.  Specific incorporation of cyclophilin A into HIV-1 virions , 1994, Nature.

[39]  K. Hellingwerf,et al.  A gene of Acinetobacter calcoaceticus BD413 encodes a periplasmic peptidyl-prolyl cis-trans isomerase of the cyclophilin sub-class that is not essential for growth. , 1994, Biochimica et biophysica acta.

[40]  J. Hacker,et al.  Confirmation of the existence of a third family among peptidyl‐prolyl cis/trans isomerases Amino acid sequence and recombinant production of parvulin , 1994, FEBS letters.

[41]  A. Goldberg,et al.  Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. , 1994, The Journal of biological chemistry.

[42]  A. Pahl,et al.  Streptomyces chrysomallus FKBP‐33 is a novel immunophilin consisting of two FK506 binding domains; its gene is transcriptionally coupled to the FKBP‐12 gene. , 1994, The EMBO journal.

[43]  G. Fischer,et al.  Über Peptidyl‐Prolyl‐cis/trans‐Isomerasen und ihre Effektoren , 1994 .

[44]  G. Fischer,et al.  A novel peptidyl‐prolyl cisltrans isomerase from Escherichia coli , 1994, FEBS letters.

[45]  A. Plückthun,et al.  An Escherichia coli protein consisting of a domain homologous to FK506-binding proteins (FKBP) and a new metal binding motif. , 1994, The Journal of biological chemistry.

[46]  B. Nall,et al.  Characterization of folding intermediates using prolyl isomerase. , 1994, Biochemistry.

[47]  C. Walsh,et al.  Secondary structure and backbone resonance assignments of the periplasmic cyclophilin type peptidyl-prolyl isomerase from Escherichia coli. , 1993, Biochemistry.

[48]  Jeremy Luban,et al.  Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B , 1993, Cell.

[49]  M. Sarvas,et al.  The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high‐level secretion , 1993, Molecular microbiology.

[50]  R F Standaert,et al.  Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. , 1993, Journal of molecular biology.

[51]  H. Ke,et al.  Similarities and differences between human cyclophilin A and other beta-barrel structures. Structural refinement at 1.63 A resolution. , 1992, Journal of molecular biology.

[52]  J. Lippke,et al.  Expression and characterization of human FKBP52, an immunophilin that associates with the 90-kDa heat shock protein and is a component of steroid receptor complexes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Sarris,et al.  IMMUNOFLUORESCENT LOCALIZATION AND IMMUNOCHEMICAL DETERMINATION OF CYCLOPHILIN‐A WITH SPECIFIC RABBIT ANTISERA , 1992, Transplantation.

[54]  J. Hacker,et al.  Mip protein of Legionella pneumophila exhibits peptidyl‐prolyl‐cis/trans isomerase (PPIase) activity , 1992, Molecular microbiology.

[55]  M. Walkinshaw,et al.  The X‐ray structure of a tetrapeptide bound to the active site of human cyclophilin A , 1992, FEBS letters.

[56]  S. Schreiber,et al.  A rapamycin-selective 25-kDa immunophilin. , 1992, Biochemistry.

[57]  Stephen W. Fesik,et al.  Lithium chloride perturbation of cis-trans peptide bond equilibria: effect on conformational equilibria in cyclosporin A and on time-dependent inhibition of cyclophilin , 1992 .

[58]  P. Caroni,et al.  s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin , 1992, The Journal of cell biology.

[59]  J. Friedman,et al.  Two cytoplasmic candidates for immunophilin action are revealed by affinity for a new cyclophilin: One in the presence and one in the absence of CsA , 1991, Cell.

[60]  J. Kofron,et al.  Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. , 1991, Biochemistry.

[61]  M Karplus,et al.  Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin , 1991, Science.

[62]  C. Zuker,et al.  The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins , 1991, Cell.

[63]  J. Liu,et al.  Human and Escherichia coli cyclophilins: sensitivity to inhibition by the immunosuppressant cyclosporin A correlates with a specific tryptophan residue. , 1991, Biochemistry.

[64]  B. Ryffel,et al.  Distribution of the cyclosporine binding protein cyclophilin in human tissues. , 1991, Immunology.

[65]  C. Walsh,et al.  Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Smith,et al.  Molecular cloning and regional distribution of rat brain cyclophilin. , 1991, Brain research. Molecular brain research.

[67]  J. Borel Pharmacology of cyclosporine (sandimmune). IV. Pharmacological properties in vivo. , 1990, Pharmacological reviews.

[68]  U. Hahn,et al.  Replacement of a cis proline simplifies the mechanism of ribonuclease T1 folding. , 1990, Biochemistry.

[69]  U. Hahn,et al.  Folding of ribonuclease T1. 2. Kinetic models for the folding and unfolding reactions. , 1990, Biochemistry.

[70]  S. Schreiber,et al.  A receptor for the immuno-suppressant FK506 is a cis–trans peptidyl-prolyl isomerase , 1989, Nature.

[71]  Nolan H. Sigal,et al.  A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin , 1989, Nature.

[72]  W. Pak,et al.  Drosophila ninaA gene encodes an eye-specific cyclophilin (cyclosporine A binding protein). , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[73]  T. Kiefhaber,et al.  Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins , 1989, Nature.

[74]  T. Hayano,et al.  Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin , 1989, Nature.

[75]  S. Lecker,et al.  ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle , 1988, Cell.

[76]  M. Okuhara,et al.  FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. , 1987, The Journal of antibiotics.

[77]  W. Wickner,et al.  Trigger factor: a soluble protein that folds pro-OmpA into a membrane-assembly-competent form. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[78]  B. Haendler,et al.  Complementary DNA for human T‐cell cyclophilin. , 1987, The EMBO journal.

[79]  D. Speicher,et al.  Isolation and amino acid sequence of cyclophilin. , 1986, The Journal of biological chemistry.

[80]  G. Fischer,et al.  [Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides]. , 1984, Biomedica biochimica acta.

[81]  S. Sehgal,et al.  Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization.:II. FERMENTATION, ISOLATION AND CHARACTERIZATION , 1975 .

[82]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.