Convergence in Backward Error of Relaxed GMRES

This work is the follow-up of the experimental study presented in [A. Bouras and V. Fraysse´, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 660-678]. It is based on and extends some theoretical results in [V. Simoncini and D. B. Szyld, SIAM J. Sci. Comput., 25 (2003), pp. 454-477; J. van den Eshof and G. L. G. Sleijpen, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 125-153]. In a backward error framework we study the convergence of GMRES when the matrix-vector products are performed inaccurately. This inaccuracy is modeled by a perturbation of the original matrix. We prove the convergence of GMRES when the perturbation size is proportional to the inverse of the computed residual norm; this implies that the accuracy can be relaxed as the method proceeds which gives rise to the terminology “relaxed GMRES.” As for the exact GMRES we show under proper assumptions that only happy breakdowns can occur. Furthermore, the convergence can be detected using a byproduct of the algorithm. We explore the links between relaxed right-preconditioned GMRES and flexible GMRES (FGMRES). In particular, this enables us to derive a proof of convergence of FGMRES. Finally, we report results of numerical experiments to illustrate the behavior of the relaxed GMRES monitored by the proposed relaxation strategies.

[1]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  Valérie Frayssé,et al.  Inexact Matrix-Vector Products in Krylov Methods for Solving Linear Systems: A Relaxation Strategy , 2005, SIAM J. Matrix Anal. Appl..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  J. van den Eshof,et al.  Relaxation strategies for nested Krylov methods , 2003 .

[6]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[7]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[8]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[9]  Miroslav Rozlo3⁄4ník Numerical Stability of the Gmres Method Numerical Stability of the Gmres Method , 2007 .

[10]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[11]  Michele Benzi,et al.  Preconditioning a mixed discontinuous finite element method for radiation diffusion , 2004, Numer. Linear Algebra Appl..

[12]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[13]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[14]  Thomas Lippert,et al.  Numerical methods for the QCD overlap operator: III. Nested iterations , 2005, Comput. Phys. Commun..

[15]  Julien Langou,et al.  Algorithm 842: A set of GMRES routines for real and complex arithmetics on high performance computers , 2005, TOMS.

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  Gerard L. G. Sleijpen,et al.  Restarted GMRES with Inexact Matrix-Vector Products , 2004, NAA.

[18]  Gerard L. G. Sleijpen,et al.  Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[19]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[20]  L. Giraud,et al.  A note on relaxed and flexible GMRES , 2004 .