Sino‐Himalayan mountains act as cradles of diversity and immigration centres in the diversification of parrotbills (Paradoxornithidae)

Montane regions like the Sino‐Himalayas constitute global diversity hotspots. Various mechanisms such as in situ adaptive divergence, speciation following immigration or allopatric diversification in complex landscapes have been proposed to account for the exceptional diversity found in a particular clade in a montane setting. We investigated macroevolutionary patterns to test these different hypotheses in the continental radiation of a Sino‐Himalayan bird group, the parrotbills (Paradoxornithidae).

[1]  C. Hughes,et al.  The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. , 2015, The New phytologist.

[2]  F. Lei,et al.  Climate niche differentiation between two passerines despite ongoing gene flow. , 2015, The Journal of animal ecology.

[3]  J. Fjeldså,et al.  The potential drivers in forming avian biodiversity hotspots in the East Himalaya Mountains of Southwest China. , 2015, Integrative zoology.

[4]  S. Jähnig,et al.  The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas , 2015, Biological reviews of the Cambridge Philosophical Society.

[5]  P. Ericson,et al.  The influence of geological events on the endemism of East Asian birds studied through comparative phylogeography , 2015 .

[6]  Robert K. Colwell,et al.  Understanding historical and current patterns of species richness of babblers along a 5000‐m subtropical elevational gradient , 2014 .

[7]  N. Matzke,et al.  Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. , 2014, Systematic biology.

[8]  D. Bolnick,et al.  Mistaking geography for biology: inferring processes from species distributions. , 2014, Trends in ecology & evolution.

[9]  J. Wen,et al.  Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae). , 2014, Molecular phylogenetics and evolution.

[10]  O. Seehausen,et al.  Diversity versus disparity and the role of ecological opportunity in a continental bird radiation , 2014 .

[11]  S. Gupta,et al.  Niche filling slows the diversification of Himalayan songbirds , 2014, Nature.

[12]  Hélène Morlon,et al.  Why does diversification slow down? , 2014, Trends in ecology & evolution.

[13]  S. Kao,et al.  Trophic niche width increases with bill-size variation in a generalist passerine: a test of niche variation hypothesis. , 2014, The Journal of animal ecology.

[14]  Hang Sun,et al.  Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau , 2014, Front. Genet..

[15]  P. Ericson,et al.  Long‐term isolation and stability explain high genetic diversity in the Eastern Himalaya , 2014, Molecular ecology.

[16]  Junhua Hu,et al.  Unveiling the Conservation Biogeography of a Data-Deficient Endangered Bird Species under Climate Change , 2014, PloS one.

[17]  Robert K. Colwell,et al.  Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains , 2013 .

[18]  Michael J. Landis,et al.  Bayesian analysis of biogeography when the number of areas is large. , 2013, Systematic biology.

[19]  S. Reddy,et al.  Comparative Phyloclimatic Analysis and Evolution of Ecological Niches in the Scimitar Babblers (Aves: Timaliidae: Pomatorhinus) , 2013, PloS one.

[20]  R. Bastrop,et al.  Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups , 2012, PloS one.

[21]  J. Weir,et al.  ECOLOGICAL LIMITS ON DIVERSIFICATION OF THE HIMALAYAN CORE CORVOIDEA , 2012, Evolution; international journal of organic evolution.

[22]  Susanne A. Fritz,et al.  Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas , 2012, Proceedings of the National Academy of Sciences.

[23]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[24]  N. Wahlberg,et al.  What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. , 2012, Ecology letters.

[25]  M. Päckert,et al.  Horizontal and elevational phylogeographic patterns of Himalayan and Southeast Asian forest passerines (Aves: Passeriformes) , 2012 .

[26]  J. Engler,et al.  Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks , 2011 .

[27]  J. Cracraft,et al.  LINEAGE DIVERSIFICATION AND MORPHOLOGICAL EVOLUTION IN A LARGE‐SCALE CONTINENTAL RADIATION: THE NEOTROPICAL OVENBIRDS AND WOODCREEPERS (AVES: FURNARIIDAE) , 2011, Evolution; international journal of organic evolution.

[28]  F. Lei,et al.  Beyond a morphological paradox: complicated phylogenetic relationships of the parrotbills (Paradoxornithidae, Aves). , 2011, Molecular phylogenetics and evolution.

[29]  M. Araújo,et al.  Rethinking species' ability to cope with rapid climate change , 2011 .

[30]  C. Orme,et al.  Determinants of Northerly Range Limits along the Himalayan Bird Diversity Gradient , 2011, The American Naturalist.

[31]  C. Leuenberger,et al.  Analysis of Ratios in Multivariate Morphometry , 2011, Systematic biology.

[32]  Yan Guo,et al.  Glacial survival east and west of the 'Mekong-Salween Divide' in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae). , 2011, Molecular phylogenetics and evolution.

[33]  F. Santini,et al.  Diversity versus disparity and the radiation of modern cetaceans , 2010, Proceedings of the Royal Society B: Biological Sciences.

[34]  J. L. Gittleman,et al.  EARLY BURSTS OF BODY SIZE AND SHAPE EVOLUTION ARE RARE IN COMPARATIVE DATA , 2010, Evolution; international journal of organic evolution.

[35]  Richard E. Glor,et al.  ENMTools: a toolbox for comparative studies of environmental niche models , 2010 .

[36]  A. Drummond,et al.  Bayesian Inference of Species Trees from Multilocus Data , 2009, Molecular biology and evolution.

[37]  F. Lei,et al.  Phylogeography of the Alcippe morrisonia (Aves: Timaliidae): long population history beyond late Pleistocene glaciations , 2009, BMC Evolutionary Biology.

[38]  Margaret E K Evans,et al.  Climate, Niche Evolution, and Diversification of the “Bird‐Cage” Evening Primroses (Oenothera, Sections Anogra and Kleinia) , 2008, The American Naturalist.

[39]  M. Turelli,et al.  Environmental Niche Equivalency versus Conservatism: Quantitative Approaches to Niche Evolution , 2008, Evolution; international journal of organic evolution.

[40]  I. Lovette,et al.  Explosive Evolutionary Radiations: Decreasing Speciation or Increasing Extinction Through Time? , 2008, Evolution; international journal of organic evolution.

[41]  Miroslav Dudík,et al.  Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation , 2008 .

[42]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[43]  C. Körner The use of 'altitude' in ecological research. , 2007, Trends in ecology & evolution.

[44]  P. Ericson,et al.  BUILD-UP OF THE HIMALAYAN AVIFAUNA THROUGH IMMIGRATION: A BIOGEOGRAPHICAL ANALYSIS OF THE PHYLLOSCOPUS AND SEICERCUS WARBLERS , 2007, Evolution; international journal of organic evolution.

[45]  Daniel L Rabosky,et al.  LIKELIHOOD METHODS FOR DETECTING TEMPORAL SHIFTS IN DIVERSIFICATION RATES , 2006, Evolution; international journal of organic evolution.

[46]  M. Turelli,et al.  THE GEOGRAPHY OF MAMMALIAN SPECIATION: MIXED SIGNALS FROM PHYLOGENIES AND RANGE MAPS , 2006, Evolution; international journal of organic evolution.

[47]  Daniel L Rabosky,et al.  LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies , 2006, Evolutionary bioinformatics online.

[48]  Campbell O. Webb,et al.  A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES , 2005, Evolution; international journal of organic evolution.

[49]  R. Moyle Phylogeny and biogeographical history of Trogoniformes, a pantropical bird order , 2005 .

[50]  Carsten Rahbek,et al.  The Mid‐Domain Effect and Species Richness Patterns:What Have We Learned So Far? , 2004, The American Naturalist.

[51]  J. Losos,et al.  Tempo and Mode of Evolutionary Radiation in Iguanian Lizards , 2003, Science.

[52]  Ulf Dieckmann,et al.  Speciation along environmental gradients , 2003, Nature.

[53]  B. Grant,et al.  Unpredictable Evolution in a 30-Year Study of Darwin's Finches , 2002, Science.

[54]  J. Kutzbach,et al.  Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times , 2001, Nature.

[55]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[56]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[57]  U. Ramakrishnan,et al.  Past climate and species ecology drive nested species richness patterns along an east‐west axis in the Himalaya , 2014 .

[58]  N. Matzke Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing , 2013 .

[59]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[60]  T. Price Speciation in birds , 2008 .