Spectral Conditions for Positive Maps

We provide partial classification of positive linear maps in matrix algebras which is based on a family of spectral conditions. This construction generalizes the celebrated Choi example of a map which is positive but not completely positive. It is shown how the spectral conditions enable one to construct linear maps on tensor products of matrix algebras which are positive but only on a convex subset of separable elements. Such maps provide basic tools to study quantum entanglement in multipartite systems.

[1]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[2]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[3]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[4]  D. Petz,et al.  Contractivity of positive and trace-preserving maps under Lp norms , 2006, math-ph/0601063.

[5]  Toshiyuki Takasaki,et al.  On the geometry of positive maps in matrix algebras , 1983 .

[6]  Andrzej Kossakowski,et al.  On the Structure of Entanglement Witnesses and New Class of Positive Indecomposable Maps , 2007, Open Syst. Inf. Dyn..

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[9]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[10]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[11]  E. Størmer Separable states and positive maps , 2007, 0710.3071.

[12]  M. Horodecki,et al.  Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps , 2000, quant-ph/0006071.

[13]  E. Størmer Positive linear maps of operator algebras , 2012 .

[14]  Fabio Benatti,et al.  Non-Decomposable Quantum Dynamical Semigroups and Bound Entangled States , 2004, Open Syst. Inf. Dyn..

[15]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[16]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[17]  Andrzej Kossakowski,et al.  Multipartite invariant states. I. Unitary symmetry , 2006 .

[18]  G. A. Miller,et al.  MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.

[19]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[20]  Andrzej Kossakowski,et al.  A class of positive atomic maps , 2007, 0711.4483.

[21]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[22]  William Arveson,et al.  Subalgebras ofC*-algebras , 1969 .

[23]  S. Woronowicz Nonextendible positive maps , 1976 .

[24]  Jaromir Fiurasek Linear-optics quantum Toffoli and Fredkin gates , 2006 .