Tests of linear hypotheses based on regression rank scores

We propose a general class of asymptotically distribution-free tests of a linear hypothesis in the linear regression model. The tests are based on regression rank scores, recently introduced by Gutenbrunner and Jureckova (1992) as dual variables to the regression quantiles of Koenker and Bassett (1978). Their properties are analogous to those of the corresponding rank tests in location model. Unlike the other regression tests based on aligned rank statistics, however, our tests do not require preliminary estimation of nuisance parameters, indeed they are invariant with respect to a regression shift of the nuisance parameters.

[1]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[2]  Stephen Portnoy,et al.  Asymptotic Behavior of the Number of Regression Quantile Breakpoints , 1991, SIAM J. Sci. Comput..

[3]  Thomas P. Hettmansperger,et al.  Rank-based inference for linear models: asymmetric errors , 1989 .

[4]  H. Koul A Class of ADF Tests for Subhypothesis in the Multiple Linear Regression , 1970 .

[5]  T. Wet,et al.  Mallows-Type Bounded-Influence-Regression Trimmed Means , 1988 .

[6]  W. C. Guenther,et al.  Analysis of variance , 1968, The Mathematical Gazette.

[7]  S. Portnoy Asymptotic behavior of regression quantiles in non-stationary, dependent cases , 1991 .

[8]  G. Shorack Embedding the Finite Sampling Process at a Rate , 1991 .

[9]  Jana Jurecková,et al.  Regression quantiles and trimmed least squares estimator under a general design , 1984, Kybernetika.

[10]  David Draper,et al.  Rank-Based Robust Analysis of Linear Models. I. Exposition and Review , 1988 .

[11]  D. Draper,et al.  RANK-BASED ROBUST ANALYSIS OF LINEAR MODELS , 2022 .

[12]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[13]  C. Gutenbrunner,et al.  Regression Rank Scores and Regression Quantiles , 1992 .

[14]  J. N. Adichie Rank Tests of Sub-Hypotheses in the General Linear Regression , 1978 .

[15]  Roger Koenker,et al.  Tests of Linear Hypotheses and l[subscript]1 Estimation , 1982 .

[16]  M. R. Osborne An effective method for computing regression quantiles , 1992 .

[17]  Roger Koenker,et al.  L-Estimation for Linear Models , 1987 .

[18]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[19]  P. Sen,et al.  Theory of rank tests , 1969 .

[20]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[21]  D. Ruppert,et al.  Trimmed Least Squares Estimation in the Linear Model , 1980 .

[22]  K. Behnen A Characterization of Certain Rank-Order Tests with Bounds for the Asymptotic Relative Efficiency , 1972 .

[23]  Thomas P. Hettmansperger,et al.  A robust analysis of the general linear model based on one step R-estimates , 1978 .

[24]  H. Scheffé,et al.  The Analysis of Variance , 1960 .

[25]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[26]  Herman Chernoff,et al.  ASYMPTOTIC NORMALITY AND EFFICIENCY OF CERTAIN NONPARAMETRIC TEST STATISTICS , 1958 .

[27]  R. Koenker,et al.  A Remark on Algorithm as 229: Computing Dual Regression Quantiles and Regression Rank Scores , 1994 .

[28]  P. Sen,et al.  Nonparametric Methods in General Linear Models. , 1986 .