Tests of linear hypotheses based on regression rank scores
暂无分享,去创建一个
Roger Koenker | Jana Jurečková | Stephen Portnoy | R. Koenker | S. Portnoy | C. Gutenbrunner | C. Gutenbrunner | J. Jurečková
[1] D. Pollard. Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.
[2] Stephen Portnoy,et al. Asymptotic Behavior of the Number of Regression Quantile Breakpoints , 1991, SIAM J. Sci. Comput..
[3] Thomas P. Hettmansperger,et al. Rank-based inference for linear models: asymmetric errors , 1989 .
[4] H. Koul. A Class of ADF Tests for Subhypothesis in the Multiple Linear Regression , 1970 .
[5] T. Wet,et al. Mallows-Type Bounded-Influence-Regression Trimmed Means , 1988 .
[6] W. C. Guenther,et al. Analysis of variance , 1968, The Mathematical Gazette.
[7] S. Portnoy. Asymptotic behavior of regression quantiles in non-stationary, dependent cases , 1991 .
[8] G. Shorack. Embedding the Finite Sampling Process at a Rate , 1991 .
[9] Jana Jurecková,et al. Regression quantiles and trimmed least squares estimator under a general design , 1984, Kybernetika.
[10] David Draper,et al. Rank-Based Robust Analysis of Linear Models. I. Exposition and Review , 1988 .
[11] D. Draper,et al. RANK-BASED ROBUST ANALYSIS OF LINEAR MODELS , 2022 .
[12] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[13] C. Gutenbrunner,et al. Regression Rank Scores and Regression Quantiles , 1992 .
[14] J. N. Adichie. Rank Tests of Sub-Hypotheses in the General Linear Regression , 1978 .
[15] Roger Koenker,et al. Tests of Linear Hypotheses and l[subscript]1 Estimation , 1982 .
[16] M. R. Osborne. An effective method for computing regression quantiles , 1992 .
[17] Roger Koenker,et al. L-Estimation for Linear Models , 1987 .
[18] R. Koenker,et al. Computing regression quantiles , 1987 .
[19] P. Sen,et al. Theory of rank tests , 1969 .
[20] E. Lehmann. Testing Statistical Hypotheses , 1960 .
[21] D. Ruppert,et al. Trimmed Least Squares Estimation in the Linear Model , 1980 .
[22] K. Behnen. A Characterization of Certain Rank-Order Tests with Bounds for the Asymptotic Relative Efficiency , 1972 .
[23] Thomas P. Hettmansperger,et al. A robust analysis of the general linear model based on one step R-estimates , 1978 .
[24] H. Scheffé,et al. The Analysis of Variance , 1960 .
[25] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[26] Herman Chernoff,et al. ASYMPTOTIC NORMALITY AND EFFICIENCY OF CERTAIN NONPARAMETRIC TEST STATISTICS , 1958 .
[27] R. Koenker,et al. A Remark on Algorithm as 229: Computing Dual Regression Quantiles and Regression Rank Scores , 1994 .
[28] P. Sen,et al. Nonparametric Methods in General Linear Models. , 1986 .