In situ peeling of one-dimensional nanostructures using a dual-probe nanotweezer.
暂无分享,去创建一个
[1] Yu Sun,et al. Development of Carbon Nanotube-Based Sensors—A Review , 2007, IEEE Sensors Journal.
[2] Z. Khim,et al. Single nanoparticle alignment by atomic force microscopy indentation , 2009 .
[3] H. Hashimoto,et al. Controlled pushing of nanoparticles: modeling and experiments , 2000 .
[4] Pulickel M. Ajayan,et al. Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.
[5] A. Raman,et al. Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope , 2009 .
[6] A. Raman,et al. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. , 2008, Nano letters.
[7] Sibylle Gemming,et al. Electromechanical switch based on Mo6S6 nanowires. , 2008, Nano letters.
[8] Tao Zhu,et al. Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement , 2008 .
[9] R. Superfine,et al. Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.
[10] G. Amaratunga,et al. Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube , 2005 .
[11] Erik Dujardin,et al. Self-assembled switches based on electroactuated multiwalled nanotubes , 2005 .
[12] M. Sever,et al. Metal-mediated cross-linking in the generation of a marine-mussel adhesive. , 2004, Angewandte Chemie.
[13] D. S. Haliyo,et al. Parallel imaging/manipulation force microscopy , 2009 .
[14] 宁北芳,et al. 疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .
[15] G. Dujardin,et al. Active drift compensation applied to nanorod manipulation with an atomic force microscope. , 2007, The Review of scientific instruments.
[16] David Dubuc,et al. Nanoelectromechanical switches based on carbon nanotubes for microwave and millimeter waves , 2007 .
[17] Sang-Mo Koo,et al. Precise Alignment of Single Nanowires and Fabrication of Nanoelectromechanical Switch and Other Test Structures , 2007, IEEE Transactions on Nanotechnology.
[18] U. Sundararaj,et al. Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .
[19] M. Rakotondrabe,et al. Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage. , 2009, The Review of scientific instruments.
[20] G. Amaratunga,et al. Nanoelectromechanical switches with vertically aligned carbon nanotubes , 2005 .
[21] Hui Xie,et al. Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback , 2009 .
[22] Y. Ishii,et al. Single molecule nanomanipulation of biomolecules. , 2001, Trends in biotechnology.
[23] Sidney R. Cohen,et al. Measurement of carbon nanotube-polymer interfacial strength , 2003 .
[24] M. Ishikawa,et al. Visualization of nanoscale peeling of carbon nanotube on graphite , 2008 .
[25] Huajian Gao,et al. Molecular dynamics simulation of peeling a DNA molecule on substrate , 2005 .