In situ peeling of one-dimensional nanostructures using a dual-probe nanotweezer.

We reported a method for in situ peeling force measurement of one-dimensional nanostructures using a dual-probe nanotweezer, which is developed on the principle of force microscopy. Benefiting from capabilities of image scanning and accurate force sensing, the nanotweezer is capable of positioning one-dimensional nanostructures deposited on a surface and then performing in situ peeling tests with pick-and-place operations at different peeling locations of interest along a selected nanostructure. In experiments, nanoscale peeling of silicon nanowires (SiNWs) on a silicon substrate has been studied. Peeling locations at the end and in the middle of the SiNW were tested and the results indicate that approximate peeling energies are needed.

[1]  Yu Sun,et al.  Development of Carbon Nanotube-Based Sensors—A Review , 2007, IEEE Sensors Journal.

[2]  Z. Khim,et al.  Single nanoparticle alignment by atomic force microscopy indentation , 2009 .

[3]  H. Hashimoto,et al.  Controlled pushing of nanoparticles: modeling and experiments , 2000 .

[4]  Pulickel M. Ajayan,et al.  Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.

[5]  A. Raman,et al.  Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope , 2009 .

[6]  A. Raman,et al.  Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. , 2008, Nano letters.

[7]  Sibylle Gemming,et al.  Electromechanical switch based on Mo6S6 nanowires. , 2008, Nano letters.

[8]  Tao Zhu,et al.  Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement , 2008 .

[9]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[10]  G. Amaratunga,et al.  Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube , 2005 .

[11]  Erik Dujardin,et al.  Self-assembled switches based on electroactuated multiwalled nanotubes , 2005 .

[12]  M. Sever,et al.  Metal-mediated cross-linking in the generation of a marine-mussel adhesive. , 2004, Angewandte Chemie.

[13]  D. S. Haliyo,et al.  Parallel imaging/manipulation force microscopy , 2009 .

[14]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[15]  G. Dujardin,et al.  Active drift compensation applied to nanorod manipulation with an atomic force microscope. , 2007, The Review of scientific instruments.

[16]  David Dubuc,et al.  Nanoelectromechanical switches based on carbon nanotubes for microwave and millimeter waves , 2007 .

[17]  Sang-Mo Koo,et al.  Precise Alignment of Single Nanowires and Fabrication of Nanoelectromechanical Switch and Other Test Structures , 2007, IEEE Transactions on Nanotechnology.

[18]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[19]  M. Rakotondrabe,et al.  Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage. , 2009, The Review of scientific instruments.

[20]  G. Amaratunga,et al.  Nanoelectromechanical switches with vertically aligned carbon nanotubes , 2005 .

[21]  Hui Xie,et al.  Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback , 2009 .

[22]  Y. Ishii,et al.  Single molecule nanomanipulation of biomolecules. , 2001, Trends in biotechnology.

[23]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[24]  M. Ishikawa,et al.  Visualization of nanoscale peeling of carbon nanotube on graphite , 2008 .

[25]  Huajian Gao,et al.  Molecular dynamics simulation of peeling a DNA molecule on substrate , 2005 .