Acceleration Tools for Diagonal Information Global Optimization Algorithms

In this paper we face a classical global optimization problem—minimization of a multiextremal multidimensional Lipschitz function over a hyperinterval. We introduce two new diagonal global optimization algorithms unifying the power of the following three approaches: efficient univariate information global optimization methods, diagonal approach for generalizing univariate algorithms to the multidimensional case, and local tuning on the behaviour of the objective function (estimates of the local Lipschitz constants over different subregions) during the global search. Global convergence conditions of a new type are established for the diagonal information methods. The new algorithms demonstrate quite satisfactory performance in comparison with the diagonal methods using only global information about the Lipschitz constant.

[1]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[2]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[3]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[4]  C. Stephens,et al.  Global Optimization Requires Global Information , 1998 .

[5]  M. A. Potapov,et al.  Numerical methods for global optimization , 1992 .

[6]  Arthur R. Butz,et al.  Space Filling Curves and Mathematical Programming , 1968, Inf. Control..

[7]  János D. Pintér,et al.  Global optimization in action , 1995 .

[8]  Roman G. Strongin,et al.  Global multidimensional optimization on parallel computer , 1992, Parallel Comput..

[9]  Graham R. Wood,et al.  Multidimensional bisection: The performance and the context , 1993, J. Glob. Optim..

[10]  B. P. Zhang,et al.  Estimation of the Lipschitz constant of a function , 1996, J. Glob. Optim..

[11]  H. D. Sherali,et al.  Computational methods in global optimization: P.M. Pardalo and J.B. Rosen (eds.), (Annals of Operations Research, vol. 25, nos. 1–4, 1990) J.C. Baltzer Scientific Publ. Company, Basel, 1990, 302 pages , 1991 .

[12]  Roman G. Strongin,et al.  The information approach to multiextremal optimization problems , 1989 .

[13]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[14]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[15]  Y. Sergeyev On convergence of "divide the best" global optimization algorithms , 1998 .

[16]  Leo Breiman,et al.  A deterministic algorithm for global optimization , 1993, Math. Program..

[17]  Y. Sergeyev A one-dimensional deterministic global minimization algorithm , 1995 .

[18]  János D. Pintér,et al.  Convergence qualification of adaptive partition algorithms in global optimization , 1992, Math. Program..

[19]  M. Piccioni,et al.  Random tunneling by means of acceptance-rejection sampling for global optimization , 1989 .

[20]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[21]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[22]  David Q. Mayne,et al.  Efficient domain partitioning algorithms for global optimization of rational and Lipschitz continuous functions , 1989 .

[23]  Vladimir A. Grishagin,et al.  Parallel Characteristical Algorithms for Solving Problems of Global Optimization , 1997, J. Glob. Optim..

[24]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[25]  B. Jaumard,et al.  On using estimates of Lipschitz constants in global optimization , 1990 .

[26]  Yaroslav D. Sergeyev,et al.  An Information Global Optimization Algorithm with Local Tuning , 1995, SIAM J. Optim..

[27]  Regina Hunter Mladineo Convergence rates of a global optimization algorithm , 1992, Math. Program..