A generalized backdoor criterion

We generalize Pearl's back-door criterion for directed acyclic graphs (DAGs) to more general types of graphs that describe Markov equivalence classes of DAGs and/or allow for arbitrarily many hidden variables. We also give easily checkable necessary and sufficient graphical criteria for the existence of a set of variables that satisfies our generalized back-door criterion, when considering a single intervention and a single outcome variable. Moreover, if such a set exists, we provide an explicit set that fulfills the criterion. We illustrate the results in several examples. R-code is available in the R-package pcalg.

[1]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[2]  Marco Valtorta,et al.  Identifiability in Causal Bayesian Networks: A Sound and Complete Algorithm , 2006, AAAI.

[3]  P. Spirtes,et al.  Causation, Prediction, and Search, 2nd Edition , 2001 .

[4]  J. Robins A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect , 1986 .

[5]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[6]  T. Richardson,et al.  Covariate selection for the nonparametric estimation of an average treatment effect , 2011 .

[7]  M. Maathuis,et al.  Estimating high-dimensional intervention effects from observational data , 2008, 0810.4214.

[8]  T. Richardson Markov Properties for Acyclic Directed Mixed Graphs , 2003 .

[9]  Jiji Zhang,et al.  Causal Reasoning with Ancestral Graphs , 2008, J. Mach. Learn. Res..

[10]  Christopher Meek,et al.  Causal inference and causal explanation with background knowledge , 1995, UAI.

[11]  James M. Robins,et al.  On the Validity of Covariate Adjustment for Estimating Causal Effects , 2010, UAI.

[12]  Thomas S. Richardson,et al.  Learning high-dimensional directed acyclic graphs with latent and selection variables , 2011, 1104.5617.

[13]  J. Ghosh Causality: Models, Reasoning and Inference, Second Edition by Judea Pearl , 2011 .

[14]  Maciej Liskiewicz,et al.  Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective , 2011, UAI.

[15]  Thomas S. Richardson,et al.  Towards Characterizing Markov Equivalence Classes for Directed Acyclic Graphs with Latent Variables , 2005, UAI.

[16]  Patrik O. Hoyer,et al.  Data-driven covariate selection for nonparametric estimation of causal effects , 2013, AISTATS.

[17]  Peter Bühlmann,et al.  Causal Inference Using Graphical Models with the R Package pcalg , 2012 .

[18]  Jiji Zhang,et al.  On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias , 2008, Artif. Intell..

[19]  I. Shpitser,et al.  A New Criterion for Confounder Selection , 2011, Biometrics.

[20]  Judea Pearl,et al.  Identification of Conditional Interventional Distributions , 2006, UAI.

[21]  Peter Bühlmann,et al.  Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm , 2007, J. Mach. Learn. Res..

[22]  Thomas S. Richardson,et al.  Causal Inference in the Presence of Latent Variables and Selection Bias , 1995, UAI.

[23]  D. Madigan,et al.  A characterization of Markov equivalence classes for acyclic digraphs , 1997 .

[24]  Maciej Liskiewicz,et al.  Constructing Separators and Adjustment Sets in Ancestral Graphs , 2014, CI@UAI.

[25]  David Maxwell Chickering,et al.  Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.

[26]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[27]  Judea Pearl,et al.  Complete Identification Methods for the Causal Hierarchy , 2008, J. Mach. Learn. Res..

[28]  J. Pearl Causal diagrams for empirical research , 1995 .

[29]  Jiji Zhang,et al.  Causal Inference and Reasoning in Causally Insu-cient Systems , 2006 .

[30]  Jin Tian,et al.  A general identification condition for causal effects , 2002, AAAI/IAAI.

[31]  Peter Bühlmann,et al.  Predicting causal effects in large-scale systems from observational data , 2010, Nature Methods.

[32]  T. Heskes,et al.  Learning Sparse Causal Models is not NP-hard , 2013, UAI.

[33]  Judea Pearl,et al.  Identification of Joint Interventional Distributions in Recursive Semi-Markovian Causal Models , 2006, AAAI.

[34]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[35]  P. Spirtes,et al.  MARKOV EQUIVALENCE FOR ANCESTRAL GRAPHS , 2009, 0908.3605.

[36]  Illtyd Trethowan Causality , 1938 .

[37]  Richard Scheines,et al.  Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling , 1987 .

[38]  P. Spirtes,et al.  Ancestral graph Markov models , 2002 .