Dust environment of active asteroids P/2019 A4 (PANSTARRS) and P/2021 A5 (PANSTARRS)

We report on the characterization of the dust activity and dynamical evolution of two faint active asteroids, P/2019 A4, and P/2021 A5, observed with the 10.4 m GTC using both imaging and spectroscopy. Asteroid P/2019 A4 activity is found to be linked to an impulsive event occurring some ±10 d around perihelion, probably due to a collision or a rotational disruption. Its orbit is stable over 100 Myr time-scales. Dust tail models reveal a short-term burst producing (2.0 ± 0.7) × 106 kg of dust for maximum particle radius rmax = 1 cm. The spectrum of P/2019 A4 is featureless, and slightly redder than the Sun. P/2021 A5 was active ∼50 d after perihelion, lasting ∼5 to ∼60 d, and ejecting (8 ± 2) × 106 kg of dust for rmax = 1 cm. The orbital simulations show that a few percent of dynamical clones of P/2021 A5 are unstable on 20–50 Myr time-scales. Thus, P/2021 A5 might be an implanted object from the JFC region or beyond. These facts point to water-ice sublimation as the activation mechanism. This object also displays a featureless spectrum, but slightly bluer than the Sun. Nuclei sizes are estimated in the few hundred meters range for both asteroids. Particle ejection speeds (≈0.2 m s−1) are consistent with escape speeds from those small-sized objects.

[1]  M. Serra-Ricart,et al.  Visible and near-infrared observations of interstellar comet 2I/Borisov with the 10.4-m GTC and the 3.6-m TNG telescopes , 2020, 2005.00786.

[2]  R. Wainscoat,et al.  Disintegration of active asteroid P/2016 G1 (PANSTARRS) , 2019, Astronomy & Astrophysics.

[3]  R. Kotulla,et al.  Episodically Active Asteroid 6478 Gault , 2019, The Astrophysical Journal.

[4]  M. Serra-Ricart,et al.  Dust properties of double-tailed active asteroid (6478) Gault , 2019, Astronomy & Astrophysics.

[5]  F. Moreno,et al.  EARLY EVOLUTION OF DISRUPTED ASTEROID P/2016 G1 (PANSTARRS) , 2016, 1607.03375.

[6]  Humberto Campins,et al.  Differences between the Pallas collisional family and similarly sized B-type asteroids ? , 2016 .

[7]  D. Jewitt,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 324P/La SAGRA , 2016, 1606.08522.

[8]  N. Haghighipour,et al.  Potential Jupiter-Family Comet Contamination of the Main Asteroid Belt , 2016, 1604.08557.

[9]  S. Sheppard,et al.  The reactivation of main-belt Comet 324P/La Sagra (P/2010 R2) , 2015, 1508.07140.

[10]  D. Davis,et al.  Effect of rotational disruption on the size–frequency distribution of the Main Belt asteroid population , 2014, 1401.1813.

[11]  D. Jewitt,et al.  LARGE PARTICLES IN ACTIVE ASTEROID P/2010 A2 , 2013, 1301.2566.

[12]  F. Moreno,et al.  COMET 22P/KOPFF: DUST ENVIRONMENT AND GRAIN EJECTION ANISOTROPY FROM VISIBLE AND INFRARED OBSERVATIONS , 2012, 1204.3998.

[13]  L. Casagrande,et al.  THE UBV(RI)C COLORS OF THE SUN , 2012, 1204.0828.

[14]  Benoit Carry,et al.  Density of asteroids , 2012, 1203.4336.

[15]  D. Jewitt,et al.  THE ACTIVE ASTEROIDS , 2011, 1112.5220.

[16]  T. Grav,et al.  NEOWISE STUDIES OF ASTEROIDS WITH SLOAN PHOTOMETRY: PRELIMINARY RESULTS , 2011, 1110.4998.

[17]  F. Moreno,et al.  THE DUST ENVIRONMENT OF MAIN-BELT COMET P/2010 R2 (LA SAGRA) , 2011 .

[18]  D. Jewitt,et al.  A recent disruption of the main-belt asteroid P/2010 A2 , 2010, Nature.

[19]  Ucla,et al.  The return of activity in main-belt comet 133P/Elst–Pizarro , 2009, 0911.5522.

[20]  Arlo U. Landolt,et al.  UBVRI PHOTOMETRIC STANDARD STARS AROUND THE CELESTIAL EQUATOR: UPDATES AND ADDITIONS , 2009, 0904.0638.

[21]  Petr Pravec,et al.  Binary asteroid population 1. Angular momentum content , 2007 .

[22]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[23]  D. Jewitt,et al.  The Strange Case of 133P/Elst-Pizarro: A Comet among the Asteroids , 2004 .

[24]  Julio A. Fernández,et al.  Are There Many Inactive Jupiter-Family Comets among the Near-Earth Asteroid Population? , 2002 .

[25]  D. Galadí-Enríquez,et al.  Secondary UBVRI-CCD standard stars in the neighbourhood of Landolt standard stars , 2000 .

[26]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[27]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[28]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[29]  Kevin R. Housen,et al.  Ejecta from impact craters , 2011 .

[30]  J. Cepa OSIRIS: Final Characterization and Scientific Capabilities , 2010 .

[31]  Giovanni F. Gronchi,et al.  Theory of Orbital Determination , 2010 .

[32]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..