Integrability and asymptotic behaviour of a differential-difference matrix equation

Abstract In this paper we consider the matrix lattice equation U n , t ( U n + 1 − U n − 1 ) = g ( n ) I , in both its autonomous ( g ( n ) = 2 ) and nonautonomous ( g ( n ) = 2 n − 1 ) forms. We show that each of these two matrix lattice equations are integrable. In addition, we explore the construction of Miura maps which relate these two lattice equations, via intermediate equations, to matrix analogs of autonomous and nonautonomous Volterra equations, but in two matrix dependent variables. For these last systems, we consider cases where the dependent variables belong to certain special classes of matrices, and obtain integrable coupled systems of autonomous and nonautonomous lattice equations and corresponding Miura maps. Moreover, in the nonautonomous case we present a new integrable nonautonomous matrix Volterra equation, along with its Lax pair. Asymptotic reductions to the matrix potential Korteweg–de Vries and matrix Korteweg–de Vries equations are also given.

[1]  Mark Kac,et al.  On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .

[2]  R. Hirota,et al.  N -Soliton Solutions of Nonlinear Network Equations Describing a Volterra System , 1976 .

[3]  R. Yamilov Symmetries as integrability criteria for differential difference equations , 2006 .

[4]  Wenxiu Ma,et al.  Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations , 1998, solv-int/9809009.

[5]  M. Ablowitz,et al.  On a Volterra system , 1996 .

[6]  S. I. Svinolupov,et al.  Multi-component Volterra and Toda type integrable equations , 1999 .

[7]  P. R. Gordoa,et al.  A nonisospectral extension of the Volterra hierarchy to 2+1 dimensions , 2005 .

[8]  O. Chvartatskyi,et al.  Generalized Volterra lattices: Binary Darboux transformations and self-consistent sources. , 2016, 1606.03744.

[9]  M. Wadati,et al.  Bäcklund Transformation for Solutions of the Modified Volterra Lattice Equation , 1999 .

[10]  S. Manakov Complete integrability and stochastization of discrete dynamical systems , 1974 .

[11]  P. R. Gordoa,et al.  Behaviour of the extended Volterra lattice , 2014, Commun. Nonlinear Sci. Numer. Simul..

[12]  P. R. Gordoa,et al.  The second Painlevé equation, a related nonautonomous semidiscrete equation, and a limit to the first Painlevé equation: Scalar and matrix cases , 2019, Physica D: Nonlinear Phenomena.

[13]  D. Levi,et al.  On non-isospectral flows, Painlevé equations, and symmetries of differential and difference equations , 1992 .

[14]  R. Yamilov CONSTRUCTION SCHEME FOR DISCRETE MIURA TRANSFORMATIONS , 1994 .

[15]  M. Wadati,et al.  A New Derivation of the Bäcklund Transformation for the Volterra Lattice , 1998 .

[16]  Zuo-nong Zhu,et al.  Nonisospectral negative Volterra flows and mixed Volterra flows: Lax pairs, infinitely many conservation laws and integrable time discretization , 2004 .

[17]  Xing-Biao Hu,et al.  Bäcklund transformation and nonlinear superposition formula of an extended Lotka - Volterra equation , 1997 .

[18]  P. R. Gordoa,et al.  Behaviour of the extended modified Volterra lattice-Reductions to generalised mKdV and NLS equations , 2018, Commun. Nonlinear Sci. Numer. Simul..

[19]  M. Wadati,et al.  Transformation Theories for Nonlinear Discrete Systems , 1976 .

[20]  P. R. Gordoa,et al.  Auto-Bäcklund transformations for a matrix partial differential equation , 2018, Physics Letters A.

[21]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .