Sparse Rational Univariate Representation

We present explicit worst case degree and height bounds for the rational univariate representation of the isolated roots of polynomial systems based on mixed volume. We base our estimations on height bounds of resultants and we consider the case of 0-dimensional, positive dimensional, and parametric polynomial systems.

[1]  B. Sturmfels,et al.  Multigraded Resultants of Sylvester Type , 1994 .

[2]  Carlos D'Andrea,et al.  Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze , 2011, 1103.4561.

[3]  Éric Schost,et al.  Bit complexity for multi-homogeneous polynomial system solving - Application to polynomial minimization , 2016, J. Symb. Comput..

[4]  Tomás Recio,et al.  Algorithms in Algebraic Geometry and Applications , 2011 .

[5]  D. Lazard Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .

[6]  Victor Y. Pan,et al.  Symbolic and Numeric Methods for Exploiting Structure in Constructing Resultant Matrices , 2002, J. Symb. Comput..

[7]  Martin Sombra The height of the mixed sparse resultant , 2002 .

[8]  Bernard Mourrain,et al.  The DMM bound: multivariate (aggregate) separation bounds , 2010, ISSAC.

[9]  John F. Canny,et al.  Generalised Characteristic Polynomials , 1990, J. Symb. Comput..

[10]  Bernd Sturmfels,et al.  On the Newton Polytope of the Resultant , 1994 .

[11]  John F. Canny,et al.  A subdivision-based algorithm for the sparse resultant , 2000, JACM.

[12]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[13]  I. Emiris,et al.  Computing Sparse Projection Operators , 2001 .

[14]  H. F. Blichfeldt A new principle in the geometry of numbers, with some applications , 1914 .

[15]  Éric Schost,et al.  A softly optimal Monte Carlo algorithm for solving bivariate polynomial systems over the integers , 2016, J. Complex..

[16]  Michael Sagraloff,et al.  On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection , 2016, ISSAC.

[17]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[18]  Martín Sombra Estimaciones para el Teorema de Ceros de Hilbert , 1998 .

[19]  Martín Sombra,et al.  An arithmetic Bernštein–Kušnirenko inequality , 2018, Mathematische Zeitschrift.

[20]  Éric Schost,et al.  Fast arithmetic for the algebraic closure of finite fields , 2014, ISSAC.

[21]  Victor Y. Pan,et al.  Improved algorithms for computing determinants and resultants , 2005, J. Complex..

[22]  Carlos D'Andrea,et al.  A Poisson formula for the sparse resultant , 2013, 1310.6617.

[23]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[24]  Philippe Flajolet,et al.  Fast computation of special resultants , 2006, J. Symb. Comput..

[25]  A. Ayad,et al.  Complexity of solving parametric polynomial systems , 2011 .

[26]  Fabrice Rouillier,et al.  Improved algorithms for solving bivariate systems via Rational Univariate Representations , 2015 .

[27]  André Galligo,et al.  Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations , 2012 .

[28]  Palaiseau Cedex,et al.  Computing Parametric Geometric Resolutions , 2001 .

[29]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .

[30]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[31]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[32]  Angelos Mantzaflaris,et al.  Multihomogeneous resultant formulae for systems with scaled support , 2009, ISSAC '09.

[33]  Erich Kaltofen,et al.  Solving systems of nonlinear polynomial equations faster , 1989, ISSAC '89.

[34]  Grégoire Lecerf Une alternative aux methodes de reecriture pour la resolution des systemes algebriques , 2001 .

[35]  Erich Kaltofen,et al.  Quadratic-time certificates in linear algebra , 2011, ISSAC '11.

[36]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[37]  Ali Fares,et al.  An algorithm for solving zero-dimensional parametric systems of polynomial homogeneous equations , 2012 .

[38]  Angelos Mantzaflaris,et al.  On the Bit Complexity of Solving Bilinear Polynomial Systems , 2016, ISSAC.

[39]  Erich Kaltofen,et al.  Linear Time Interactive Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix , 2016, ISSAC.

[40]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[41]  Éric Schost,et al.  Sharp estimates for triangular sets , 2004, ISSAC '04.

[42]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[43]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .