Sparse Rational Univariate Representation
暂无分享,去创建一个
[1] B. Sturmfels,et al. Multigraded Resultants of Sylvester Type , 1994 .
[2] Carlos D'Andrea,et al. Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze , 2011, 1103.4561.
[3] Éric Schost,et al. Bit complexity for multi-homogeneous polynomial system solving - Application to polynomial minimization , 2016, J. Symb. Comput..
[4] Tomás Recio,et al. Algorithms in Algebraic Geometry and Applications , 2011 .
[5] D. Lazard. Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .
[6] Victor Y. Pan,et al. Symbolic and Numeric Methods for Exploiting Structure in Constructing Resultant Matrices , 2002, J. Symb. Comput..
[7] Martin Sombra. The height of the mixed sparse resultant , 2002 .
[8] Bernard Mourrain,et al. The DMM bound: multivariate (aggregate) separation bounds , 2010, ISSAC.
[9] John F. Canny,et al. Generalised Characteristic Polynomials , 1990, J. Symb. Comput..
[10] Bernd Sturmfels,et al. On the Newton Polytope of the Resultant , 1994 .
[11] John F. Canny,et al. A subdivision-based algorithm for the sparse resultant , 2000, JACM.
[12] John F. Canny,et al. Some algebraic and geometric computations in PSPACE , 1988, STOC '88.
[13] I. Emiris,et al. Computing Sparse Projection Operators , 2001 .
[14] H. F. Blichfeldt. A new principle in the geometry of numbers, with some applications , 1914 .
[15] Éric Schost,et al. A softly optimal Monte Carlo algorithm for solving bivariate polynomial systems over the integers , 2016, J. Complex..
[16] Michael Sagraloff,et al. On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection , 2016, ISSAC.
[17] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[18] Martín Sombra. Estimaciones para el Teorema de Ceros de Hilbert , 1998 .
[19] Martín Sombra,et al. An arithmetic Bernštein–Kušnirenko inequality , 2018, Mathematische Zeitschrift.
[20] Éric Schost,et al. Fast arithmetic for the algebraic closure of finite fields , 2014, ISSAC.
[21] Victor Y. Pan,et al. Improved algorithms for computing determinants and resultants , 2005, J. Complex..
[22] Carlos D'Andrea,et al. A Poisson formula for the sparse resultant , 2013, 1310.6617.
[23] Fabrice Rouillier,et al. Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.
[24] Philippe Flajolet,et al. Fast computation of special resultants , 2006, J. Symb. Comput..
[25] A. Ayad,et al. Complexity of solving parametric polynomial systems , 2011 .
[26] Fabrice Rouillier,et al. Improved algorithms for solving bivariate systems via Rational Univariate Representations , 2015 .
[27] André Galligo,et al. Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations , 2012 .
[28] Palaiseau Cedex,et al. Computing Parametric Geometric Resolutions , 2001 .
[29] Marie-Françoise Roy,et al. Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .
[30] Arne Storjohann,et al. The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..
[31] D. N. Bernshtein. The number of roots of a system of equations , 1975 .
[32] Angelos Mantzaflaris,et al. Multihomogeneous resultant formulae for systems with scaled support , 2009, ISSAC '09.
[33] Erich Kaltofen,et al. Solving systems of nonlinear polynomial equations faster , 1989, ISSAC '89.
[34] Grégoire Lecerf. Une alternative aux methodes de reecriture pour la resolution des systemes algebriques , 2001 .
[35] Erich Kaltofen,et al. Quadratic-time certificates in linear algebra , 2011, ISSAC '11.
[36] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[37] Ali Fares,et al. An algorithm for solving zero-dimensional parametric systems of polynomial homogeneous equations , 2012 .
[38] Angelos Mantzaflaris,et al. On the Bit Complexity of Solving Bilinear Polynomial Systems , 2016, ISSAC.
[39] Erich Kaltofen,et al. Linear Time Interactive Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix , 2016, ISSAC.
[40] Teresa Krick,et al. Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.
[41] Éric Schost,et al. Sharp estimates for triangular sets , 2004, ISSAC '04.
[42] Arnold Schönhage,et al. The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .
[43] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .