Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating

This article reports the off-design performance analysis of a closed-cycle ocean thermal energy conversion (OTEC) system when a solar thermal collector is integrated as an add-on preheater or superheater. Design-point analysis of a simple OTEC system was numerically conducted to generate a gross power of 100 kW, representing a base OTEC system. In order to improve the power output of the OTEC system, two ways of utilizing solar energy are considered in this study: (1) preheating of surface seawater to increase its input temperature to the cycle and (2) direct superheating of the working fluid before it enters a turbine. Obtained results reveal that both preheating and superheating cases increase the net power generation by 20–25% from the design-point. However, the preheating case demands immense heat load on the solar collector due to the huge thermal mass of the seawater, being less efficient thermodynamically. The superheating case increases the thermal efficiency of the system from 1.9% to around 3%, about a 60% improvement, suggesting that this should be a better approach in improving the OTEC system. This research provides thermodynamic insight on the potential advantages and challenges of adding a solar thermal collection component to OTEC power plants.

[1]  Y. Ikegami,et al.  OPTIMIZATION OF A CLOSED-CYCLE OTEC SYSTEM , 1990 .

[2]  D. Bharathan Staging Rankine Cycles Using Ammonia for OTEC Power Production , 2011 .

[3]  Robert A. Taylor,et al.  Nanofluid-based direct absorption solar collector , 2010 .

[4]  U Frei,et al.  Comparison of three different collectors for process heat applications , 1994, Other Conferences.

[5]  Noboru Yamada,et al.  Thermal Efficiency Enhancement of Ocean Thermal Energy Conversion (OTEC) Using Solar Thermal Energy , 2006 .

[6]  R. Yeh,et al.  Maximum output of an OTEC power plant , 2005 .

[7]  Ronald H. Aungier,et al.  Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis , 2006 .

[8]  Y. Mansoori,et al.  Synthetic heat carrier oil compositions based on polyalkylene glycols , 2007 .

[9]  Gérard C. Nihous,et al.  Mapping available Ocean Thermal Energy Conversion resources around the main Hawaiian Islands with state-of-the-art tools , 2010 .

[10]  B. K. Parsons,et al.  Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE) , 1990 .

[11]  W. Marion,et al.  A new solar radiation data manual for flat‐plate and concentrating collectors , 1994 .

[12]  O. E. Baljé,et al.  Turbomachines—A Guide to Design Selection and Theory , 1981 .

[13]  Li Jing,et al.  Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas , 2010 .

[14]  Richard J. Seymour,et al.  Ocean energy recovery : the state of the art , 1992 .

[15]  K. Ng,et al.  Using the condenser effluent from a nuclear power plant for Ocean Thermal Energy Conversion (OTEC) , 2009 .

[16]  Satoru Goto,et al.  Construction of Simulation Model for OTEC Plant Using Uehara Cycle , 2009 .

[17]  E. Stefanakos,et al.  A REVIEW OF THERMODYNAMIC CYCLES AND WORKING FLUIDS FOR THE CONVERSION OF LOW-GRADE HEAT , 2010 .

[18]  M. Monde,et al.  Shell-and-Plate-Type Heat Exchangers for OTEC Plants , 1984 .

[19]  A. S. Dalkılıç,et al.  Two-Phase Heat Transfer Coefficients of R134a Condensation in Vertical Downward Flow at High Mass Flux , 2011 .

[20]  M. Subbiah The Characteristics of Brazed Plate Heat Exchangers with Different Chevron Angles , 2012 .

[21]  Changxu Wu Specific power optimization of closed-cycle OTEC plants , 1990 .

[22]  H. Tyagi,et al.  Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector , 2009 .

[23]  J. Clark,et al.  A thermal-optical analysis of a compound parabolic concentrator for single and multiphase flows, including superheat , 1987 .

[24]  E. N. Ganic,et al.  Performance study of an OTEC system , 1980 .

[25]  Luis A. Vega,et al.  Ocean Thermal Energy Conversion , 2012 .

[26]  L. Vega Ocean thermal energy conversion primer , 2002 .

[27]  M. Ravindran,et al.  The Indian 1 MW demonstration OTEC plant and the development activities , 2002, OCEANS '02 MTS/IEEE.

[28]  N. Yamada,et al.  Performance simulation of solar-boosted ocean thermal energy conversion plant , 2009 .

[29]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1 | NIST , 2013 .

[30]  Bo Yang,et al.  Performance analysis and improvement for CC-OTEC system , 2008 .

[31]  F. C. Paddison,et al.  Alternative ocean energy products and hybrid geothermal-OTEC /GEOTEC/ plants , 1981 .

[32]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[33]  M. He,et al.  A review of research on the Kalina cycle , 2012 .

[34]  Frank Buttinger,et al.  Development of a new flat stationary evacuated CPC-collector for process heat applications , 2010 .

[35]  E. Sani,et al.  Carbon nanohorns-based nanofluids as direct sunlight absorbers. , 2010, Optics express.

[36]  M. J. Wheeler Heat and Mass Transfer , 1968, Nature.

[37]  Bong Jae Lee,et al.  Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption , 2012 .

[38]  Roland Winston,et al.  Principles of solar concentrators of a novel design , 1974 .

[39]  R. Tillner-Roth,et al.  An International Standard Equation of State for Difluoromethane (R-32) for Temperatures from the Triple Point at 136.34 K to 435 K and Pressures up to 70 MPa , 1997 .