The Sariçiçek howardite fall in Turkey: Source crater of HED meteorites on Vesta and impact risk of Vestoids

The Sariçiçek howardite meteorite shower consisting of 343 documented stones occurred on September 2, 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Sariçiçek experienced a complex cosmic‐ray exposure history, exposed during ~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid was launched by an impact 22 ± 2 Ma ago to Earth (as did one‐third of all HED meteorites). SIMS dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages for the basaltic magma clasts. The apatite U‐Pb age of 4525 ± 17 Ma, K‐Ar age of ~3.9 Ga, and the U,Th‐He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic and impact‐related resetting ages, respectively. Petrographic; geochemical; and O‐, Cr‐, and Ti‐isotopic studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic observations and analysis of organic material indicate a small portion of carbonaceous chondrite material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 km s−1 from NW; fragmentations at 37, 33, 31, and 27 km altitude; and provide a pre‐atmospheric orbit that is the first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data indicate the similarity of Sariçiçek with the Vesta asteroid family (V‐class) spectra, a group of asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4 m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antionia impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was formed ~22 Ma ago.

[1]  Nicholas Moskovitz,et al.  Detection of meteoroid impacts by the Geostationary Lightning Mapper on the GOES‐16 satellite , 2018, Meteoritics & Planetary Science.

[2]  Rafael A. Alemañ,et al.  Internal structure of asteroid gravitational aggregates , 2018 .

[3]  J. Gattacceca,et al.  The Meteoritical Bulletin, No. 105 , 2017 .

[4]  P. J. Register,et al.  A fragment-cloud model for asteroid breakup and atmospheric energy deposition , 2017 .

[5]  D. Mittlefehldt,et al.  Bunburra Rockhole: Exploring the geology of a new differentiated asteroid , 2017 .

[6]  M. Caffee,et al.  Park Forest (L5) and the asteroidal source of shocked L chondrites , 2017 .

[7]  H. Haack,et al.  Previously unknown class of metalorganic compounds revealed in meteorites , 2017, Proceedings of the National Academy of Sciences.

[8]  B. A. Brown,et al.  The oxygen isotopes , 2017 .

[9]  R. Jedicke,et al.  Escape of asteroids from the main belt , 2017 .

[10]  D. Mittlefehldt,et al.  The Diversity of Anomalous HEDs: Isotopic Constraints on the Connection of EET 92023, GRA 98098, and Dhofar 700 With Vesta , 2016 .

[11]  Robert Jedicke,et al.  Super-catastrophic disruption of asteroids at small perihelion distances , 2016, Nature.

[12]  Orbital and physical characteristics of meter-scale impactors from airburst observations , 2015, 1511.07479.

[13]  D. Mathias,et al.  Effect of Different Rock Models on Hydrocode Simulations of Asteroid Airburst and Impact Blast , 2015 .

[14]  E. Asphaug,et al.  Scale-Dependent Measurements of Meteorite Strength and Fragmentation: Tamdakht (H5) and Allende (CV3). , 2015 .

[15]  R. Reedy,et al.  Concentrations of potassium and thorium within Vesta’s regolith , 2015 .

[16]  P. Benni,et al.  THE PHYSICAL CHARACTERIZATION OF THE POTENTIALLY HAZARDOUS ASTEROID 2004 BL86: A FRAGMENT OF A DIFFERENTIATED ASTEROID , 2015, 1509.07122.

[17]  W. Akram,et al.  Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system , 2015 .

[18]  E. Cloutis,et al.  Near infrared spectroscopy of HED meteorites: Effects of viewing geometry and compositional variations , 2015 .

[19]  D. Scheeres,et al.  INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY , 2015, 1506.03354.

[20]  D. Mittlefehldt Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites , 2015 .

[21]  Q. Yin,et al.  Towards higher precision SIMS U–Pb zircon geochronology via dynamic multi-collector analysis , 2015 .

[22]  Jisun Park,et al.  Rheasilvia provenance of the Kapoeta howardite inferred from ∼1 Ga 40Ar/39Ar feldspar ages , 2015 .

[23]  E. Cloutis,et al.  Exploring exogenic sources for the olivine on Asteroid (4) Vesta , 2015, 1502.03189.

[24]  D. Vokrouhlický,et al.  In search of the source of asteroid (101955) Bennu: Applications of the stochastic YORP model , 2015 .

[25]  M. Wadhwa,et al.  The uranium isotopic composition of the Earth and the Solar System , 2015 .

[26]  C. Russell,et al.  Morphology and formation ages of mid-sized post-Rheasilvia craters - Geology of quadrangle Tuccia, Vesta , 2014 .

[27]  C. Russell,et al.  The chronostratigraphy of protoplanet Vesta , 2014 .

[28]  C. Russell,et al.  Asymmetric craters on Vesta: Impact on sloping surfaces , 2014 .

[29]  C. Russell,et al.  The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites , 2014 .

[30]  C. Russell,et al.  Geologic mapping of ejecta deposits in Oppia Quadrangle, Asteroid (4) Vesta , 2014 .

[31]  D. Mittlefehldt,et al.  The quest for regolithic howardites. Part 2: Surface origins highlighted by noble gases , 2014 .

[32]  C. Russell,et al.  Constraining the cratering chronology of Vesta , 2014, 1407.3303.

[33]  B. Schmitz,et al.  He and Ne in individual chromite grains from the regolith breccia Ghubara (L5): Exploring the history of the L chondrite parent body regolith , 2014 .

[34]  Q. Yin,et al.  Chromium Isotopic Composition of the Anomalous Eucrites: An Additional Geochemical Parameter for Evaluating Their Origin , 2014 .

[35]  C. Russell,et al.  The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters , 2014 .

[36]  Alessandro Frigeri,et al.  Geologic Mapping of Vesta , 2014 .

[37]  Peter S. Gural,et al.  Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization , 2013, Science.

[38]  J. Borovička,et al.  A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors , 2013, Nature.

[39]  Pavel Spurný,et al.  The trajectory, structure and origin of the Chelyabinsk asteroidal impactor , 2013, Nature.

[40]  Andreas Nathues,et al.  Olivine or impact melt: Nature of the “Orange” material on Vesta from Dawn , 2013, 1308.1131.

[41]  E. Palomba,et al.  The 2.5-5.1 μm reflectance spectra of HED meteorites and their constituent minerals: Implications for Dawn , 2013 .

[42]  H. Melosh,et al.  Two‐dimensional numerical modeling of the Rheasilvia impact formation , 2013 .

[43]  Daniel J. Scheeres,et al.  The strength of regolith and rubble pile asteroids , 2013, 1306.1622.

[44]  Q. Yin,et al.  SIMS Pb-Pb and U-Pb age determination of eucrite zircons at < 5 μm scale and the first 50 Ma of the thermal history of Vesta , 2013 .

[45]  B. Cohen The Vestan cataclysm: Impact‐melt clasts in howardites and the bombardment history of 4 Vesta , 2013 .

[46]  C. Russell,et al.  Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images , 2013 .

[47]  D. Mittlefehldt,et al.  The quest for regolithic howardites. Part 1: Two trends uncovered using noble gases , 2013 .

[48]  Asymmetric craters on Vesta , 2013 .

[49]  Andreas Nathues,et al.  Olivine or Impact Melt , 2013 .

[50]  S. Wolf,et al.  Determination of 11 major and minor elements in chondritic meteorites by inductively coupled plasma mass spectrometry. , 2012, Talanta.

[51]  H. McSween,et al.  Petrologic and textural diversity among the PCA 02 howardite group, one of the largest pieces of the Vestan surface , 2012 .

[52]  R. Jaumann,et al.  The Violent Collisional History of Asteroid 4 Vesta , 2012, Science.

[53]  P. Brown,et al.  Infrasound production by bolides: A global statistical study , 2012 .

[54]  Andrew M. Davis,et al.  The proto-Earth as a significant source of lunar material , 2012 .

[55]  Terence P. McClafferty,et al.  The Bunburra Rockhole meteorite fall in SW Australia: fireball trajectory, luminosity, dynamics, orbit, and impact position from photographic and photoelectric records , 2012 .

[56]  P. Spurný,et al.  Cosmic‐ray exposure age and preatmospheric size of the Bunburra Rockhole achondrite , 2012 .

[57]  Z. Gabelica,et al.  Chemical footprint of the solvent soluble extraterrestrial organic matter occluded in Soltmany ordinary chondrite. , 2012 .

[58]  R. Reedy,et al.  THE LUNAR REGOLITH , 2012 .

[59]  T. Niihara Uranium‐lead age of baddeleyite in shergottite Roberts Massif 04261: Implications for magmatic activity on Mars , 2011 .

[60]  A. Davis,et al.  A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites , 2011 .

[61]  K. T. Ramesh,et al.  The dynamic strength of an ordinary chondrite , 2011 .

[62]  Peter Jenniskens,et al.  CAMS: Cameras for Allsky Meteor Surveillance to establish minor meteor showers , 2011 .

[63]  D. Bogard K–Ar ages of meteorites: Clues to parent-body thermal histories , 2011 .

[64]  P. Wiegert,et al.  A numerical comparison with the Ceplecha analytical meteoroid orbit determination method , 2011 .

[65]  N. Hertkorn,et al.  Kendrick-Analogous Network Visualisation of Ion Cyclotron Resonance Fourier Transform Mass Spectra: Improved Options for the Assignment of Elemental Compositions and the Classification of Organic Molecular Complexity , 2011, European journal of mass spectrometry.

[66]  M. Gaffey,et al.  First fragment of Asteroid 4 Vesta's mantle detected , 2011 .

[67]  D. Britt,et al.  Density, porosity, and magnetic susceptibility of achondritic meteorites , 2011 .

[68]  Kevin R. Housen,et al.  Ejecta from impact craters , 2011 .

[69]  Daniel P. Glavin,et al.  The effects of parent body processes on amino acids in carbonaceous chondrites , 2010 .

[70]  Xian‐Hua Li,et al.  Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique , 2010 .

[71]  Douglas R. Christie,et al.  The IMS Infrasound Network: Design and Establishment of Infrasound Stations , 2010 .

[72]  A. Makishima,et al.  Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry. , 2009, Analytical chemistry.

[73]  G. Kallemeyn,et al.  Siderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias , 2009 .

[74]  Terence P. McClafferty,et al.  An Anomalous Basaltic Meteorite from the Innermost Main Belt , 2009, Science.

[75]  J. Masarik,et al.  Cosmogenic nuclides in stony meteorites revisited , 2009 .

[76]  M. Bizzarro,et al.  Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.

[77]  I. Franchi,et al.  The Puerto Lápice eucrite , 2009 .

[78]  Elsevier Ltd Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites , 2009 .

[79]  M. Darby Dyar,et al.  Characterization of the 1.2 μm M1 pyroxene band: Extracting cooling history from near‐IR spectra of pyroxenes and pyroxene‐dominated rocks , 2008 .

[80]  F. Corfu,et al.  Zircon M257 ‐ a Homogeneous Natural Reference Material for the Ion Microprobe U‐Pb Analysis of Zircon , 2008 .

[81]  Robert Jedicke,et al.  The Distribution of Basaltic Asteroids in the Main Belt , 2008, 0807.3951.

[82]  P. Rochette,et al.  Magnetic anisotropy of HED and Martian meteorites and implications for the crust of Vesta and Mars , 2008 .

[83]  B. Gladman,et al.  Fugitives from the Vesta family , 2008 .

[84]  J. Southon,et al.  Absolute calibration of 10Be AMS standards , 2007 .

[85]  Mark B. Boslough,et al.  Low-altitude airbursts and the impact threat. , 2007 .

[86]  J. Birck,et al.  Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .

[87]  R. Wieler,et al.  Solar Wind Neon from Genesis: Implications for the Lunar Noble Gas Record , 2006, Science.

[88]  S. Eggins,et al.  Chemical systematics of conodont apatite determined by laser ablation ICPMS , 2006 .

[89]  P. Jenniskens Meteor Showers and their Parent Comets , 2006 .

[90]  James H. Doty,et al.  Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography‐time of flight‐mass spectrometry , 2006 .

[91]  D. Revelle,et al.  Estimates of meteoroid kinetic energies from observations of infrasonic airwaves , 2006 .

[92]  D. O. ReVelle,et al.  Recent Advances in Bolide Entry Modeling:A Bolide Potpourri* , 2006 .

[93]  D. Revelle,et al.  Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere , 2005 .

[94]  M. Rehkämper,et al.  Ion exchange chromatography and high precision isotopic measurements of zirconium by MC-ICP-MS , 2004 .

[95]  Steven Businger,et al.  Infrasonic observations of open ocean swells in the Pacific: Deciphering the song of the sea , 2004 .

[96]  L. Nittler,et al.  Bulk element compositions of meteorites: A guide for interpreting remote-sensing geochemical measurements of planets and asteroids , 2004 .

[97]  K. Nishiizumi Preparation of 26Al AMS standards , 2004 .

[98]  D. Revelle Recent Advances in Bolide Entry Modeling: A Bolide Potpourri , 2004 .

[99]  M. Lipschutz,et al.  Chemical studies of L chondrites. V: compositional patterns for 49 trace elements in 14 L4-6 and 7 LL4-6 falls , 2003 .

[100]  D. Garrison,et al.  39Ar‐40Ar ages of eucrites and thermal history of asteroid 4 Vesta , 2003 .

[101]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[102]  M. Gaffey,et al.  High‐albedo asteroid 434 Hungaria: Spectrum, composition and genetic connections , 2002 .

[103]  G. Hahn,et al.  Physical Properties of Near-Earth Objects , 2002 .

[104]  Erik Asphaug,et al.  Asteroid Interiors , 2002 .

[105]  R. Wieler,et al.  The production of cosmogenic nuclides by galactic cosmic‐ray particles for 2π exposure geometries , 2001 .

[106]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[107]  K. Nishiizumi,et al.  Cosmic‐ray exposure history of two Frontier Mountain H‐chondrite showers from spallation and neutron‐capture products , 2001 .

[108]  D. Elmore,et al.  PRIME lab AMS performance, upgrades and research applications , 2000 .

[109]  M. Wingate,et al.  Crystal orientation effects during ion microprobe U–Pb analysis of baddeleyite , 2000 .

[110]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[111]  A. J. Naldrett,et al.  Geochronology of the Voisey's Bay intrusion, Labrador, Canada, by precise U–Pb dating of coexisting baddeleyite, zircon, and apatite , 1999 .

[112]  Y. Sano,et al.  ION MICROPROBE U-PB DATING OF APATITE , 1999 .

[113]  Carsten Steger,et al.  An Unbiased Detector of Curvilinear Structures , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[114]  Andrew V. Wolfsberg,et al.  Rock Fractures and Fluid Flow: Contemporary Understanding and Applications , 1997 .

[115]  L. Schultz,et al.  Cosmic‐ray exposure ages of diogenites and the recent collisional history of the howardite, eucrite and diogenite parent body/bodies , 1997 .

[116]  A. Piggott Fractal relations for the diameter and trace length of disc-shaped fractures , 1997 .

[117]  G. J. Taylor,et al.  Global Crustal Metamorphism of the Eucrite Parent Body , 1996 .

[118]  C. Arpesella A low background counting facility at laboratori nazionali del Gran Sasso , 1996 .

[119]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[120]  G. J. Taylor,et al.  Metamorphic history of the eucritic crust of 4 Vesta , 1995 .

[121]  Yves Cansi,et al.  An automatic seismic event processing for detection and location: The P.M.C.C. Method , 1995 .

[122]  D. O. ReVelle,et al.  Historical Detection of Atmospheric Impacts by Large Bolides Using Acoustic‐Gravity Waves a , 1995 .

[123]  O. Eugster,et al.  Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites , 1995 .

[124]  Mark Boslough,et al.  Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations , 1994 .

[125]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[126]  D. Ming Lunar sourcebook. A user's guide to the moon , 1992 .

[127]  U. Herpers,et al.  Depth and size dependence of cosmogenic nuclide production rates in stony meteoroids , 1991 .

[128]  D. Sears,et al.  The natural thermoluminescence of meteorites: III. lunar and basaltic meteorites☆ , 1991 .

[129]  H. Takeda,et al.  Degree of equilibration of eucritic pyroxenes and thermal metamorphism of the earliest planetary crust , 1991 .

[130]  Dale P. Cruikshank,et al.  Three basaltic earth-approaching asteroids and the source of the basaltic meteorites , 1991 .

[131]  H. Gove,et al.  Development of 36Cl standards for AMS , 1990 .

[132]  Z. Sharp A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides , 1990 .

[133]  J. M. McGlaun,et al.  CTH: A three-dimensional shock wave physics code , 1990 .

[134]  L. Schultz,et al.  Helium, neon, and argon in meteorites: A data collection , 1989 .

[135]  R. Wieler,et al.  Exposure history of the regolithic chondrite Fayetteville: I. Solar-gas-rich matrix☆ , 1989 .

[136]  D. Davis,et al.  Experiments and scaling laws for catastrophic collisions , 1989 .

[137]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[138]  O. V. Breemen,et al.  Baddeleyite-zircon relationships in coronitic metagabbro, Grenville Province, Ontario: implications for geochronology , 1988 .

[139]  D. Sears,et al.  The natural thermoluminescence of meteorites: I. Twenty‐three Antarctic meteorites of known 26Al content , 1987 .

[140]  J. N. Barrows,et al.  The Allende meteorite reference sample , 1987 .

[141]  E. Everhart An efficient integrator that uses Gauss-Radau spacings , 1985 .

[142]  R. Morin MOBILITY OF SODIUM ON THE (110) FACE OF TUNGSTEN , 1984 .

[143]  G. Wasserburg,et al.  The isotopic composition of titanium in the Allende and Leoville meteorites , 1981 .

[144]  G. Consolmagno,et al.  Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts] , 1977 .

[145]  C. Karr Infrared and Raman spectroscopy of lunar and terrestrial minerals , 1975 .

[146]  John L. Remo,et al.  A new interpretation of the mechanical properties of the Gibeon meteorite. , 1974 .

[147]  M. Tatsumoto,et al.  Time Differences in the Formation of Meteorites as Determined from the Ratio of Lead-207 to Lead-206 , 1973, Science.

[148]  Kozo Sato On the Cratering , 1973 .

[149]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[150]  M. Bender,et al.  NUCLIDE PRODUCTION BY COSMIC RAYS IN METEORITES AND ON THE MOON. , 1968 .

[151]  L. Jacchia,et al.  An analysis of the atmospheric trajectories of 413 precisely reduced photographic meteors , 1967 .

[152]  T. J. Murphy,et al.  Absolute Isotopic Abundance Ratios and the Atomic Weight of a Reference Sample of Chromium. , 1966, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[153]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[154]  K. Boulding,et al.  THE NATIONAL ACADEMIES PRESS , 2017 .