Estimation of total atmospheric water vapor content from split-window radiance measurements

Abstract Different studies have shown that the estimation of the surface temperature from split-window algorithms can be greatly improved by a rough knowledge of the total atnwspheric water vapor. In this article, we have tested the split-window covariance variance ratio technique to estimate the total columnar water vapor content. This method has been applied over sea surfaces and over land on two databases. The first dataset contains AVHRR/NOAA9 and ATSR-IR/ERSI data coincident with radio soundings over Europe (land areas). The second one includes ATSR-IR images and water vapor content estimations derived from the microwave radiometer ATSR-MW on board ERSI over the Atlantic Ocean and the Mediterranean Sea. The results show the necessity of using two different algorithms: one for land and another for sea pixels because of the effects c f surface cini.ssivity. Then, two algorithms have been calibrated and validated. The conclusion is that the columnar water vapor content may be estinuzted from thermal infrared .split-window channels with an accuracy better than 0.5 g/cm 2 , which is, in most cases, enough to improve surface temperature retrievals with infrared radiometers.

[1]  Sid-Ahmed Boukabara,et al.  The microwave radiometer aboard ERS-1. II. Validation of the geophysical products , 1996, IEEE Trans. Geosci. Remote. Sens..

[2]  Thomas F. Eck,et al.  AVHRR split window temperature differences and total precipitable water over land surfaces , 1994 .

[3]  Wayne D. Robinson,et al.  Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels , 1982 .

[4]  Zhao-Liang Li,et al.  Improvements in the split-window technique for land surface temperature determination , 1994, IEEE Trans. Geosci. Remote. Sens..

[5]  Catherine Ottlé,et al.  Estimation of the angular variation of the sea surface emissivity with the ATSR/ERS-1 data , 1994 .

[6]  Larry M. McMillin,et al.  Retrieval of Precipitable Water from Observations in the Split Window over Varying Surface Temperatures , 1990 .

[7]  Carlo Ulivieri,et al.  A split window algorithm for estimating land surface temperature from satellites , 1994 .

[8]  Gary J. Jedlovec,et al.  A Technique for Deriving Column-integrated Water Content Using VAS Split-Window Data , 1993 .

[9]  P. Schluessel,et al.  Satellite-derived low-level atmospheric water vapour content from synergy of AVHRR with HIRS , 1989 .

[10]  I. J. Barton,et al.  A non-regression-coefficients method of sea surface temperature retrieval from space , 1994 .

[11]  G. Dalu Satellite remote sensing of atmospheric water vapour , 1986 .

[12]  C. Francois,et al.  Atmospheric corrections in the thermal infrared: global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data , 1996, IEEE Trans. Geosci. Remote. Sens..

[13]  Pierre Bessemoulin,et al.  Evaporation over land surfaces - First results from HAPEX-MOBILHY Special Observing Period , 1988 .

[14]  R. Bernard,et al.  A Simple Method for Testing Brightness Temperatures from Satellite Microwave Radiometers , 1994 .

[15]  José A. Sobrino,et al.  Thermal remote sensing of land surface temperature from satellites: Current status and future prospects , 1995 .

[16]  Ann Y. Hsu,et al.  Modeled and observed relations between the AVHRR split window temperature difference and atmospheric precipitable water over land surfaces , 1995 .

[17]  Gary J. Jedlovec,et al.  Precipitable water estimation from high-resolution split window radiance measurements , 1990 .

[18]  Andrew Harris,et al.  An extension to the split-window technique giving improved atmospheric correction and total water vapour , 1992 .

[19]  Wayne D. Robinson,et al.  Optimized Retrievals of Precipitable Water from the VAS “Split Window” , 1987 .