Learning to Rank for Collaborative Filtering

Up to now, most contributions to collaborative filtering rely on rating prediction to generate the recommendations. We, instead, try to correctly rank the items according to the users’ tastes. First, we define a ranking error function which takes available pairwise preferences between items into account. Then we design an effective algorithm that optimizes this error. Finally we illustrate the proposal on a standard collaborative filtering dataset. We adapted the evaluation protocol proposed by (Marlin, 2004) for rating prediction based systems to our case, where pairwise preferences are predicted instead. The preliminary results are between those of two reference rating prediction based methods. We suggest different directions to further explore our ranking based approach for collaborative filtering.

[1]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[2]  Benjamin M. Marlin,et al.  Modeling User Rating Profiles For Collaborative Filtering , 2003, NIPS.

[3]  Massih-Reza Amini,et al.  Automatic Text Summarization Based on Word-Clusters and Ranking Algorithms , 2005, ECIR.

[4]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[5]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[6]  Benjamin M. Marlin,et al.  Collaborative Filtering: A Machine Learning Perspective , 2004 .

[7]  Ke Wang,et al.  RecTree: An Efficient Collaborative Filtering Method , 2001, DaWaK.

[8]  Massih-Reza Amini,et al.  Unsupervised Learning with Term Clustering for Thematic Segmentation of Texts , 2004, RIAO.

[9]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[10]  G. Karypis,et al.  Item-based Top-n Recommendation Algorithms Item-based Top-n Recommendation Algorithms Item-based Top-n Recommendation Algorithms * , 2004 .

[11]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[12]  Massih-Reza Amini,et al.  Factorisation en matrices non négatives pour le filtrage collaboratif , 2006, CORIA.

[13]  Thomas G. Dietterich,et al.  Editors. Advances in Neural Information Processing Systems , 2002 .

[14]  Massih-Reza Amini,et al.  Semi-Supervised Learning with Explicit Misclassification Modeling , 2003, IJCAI.

[15]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[16]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[17]  Inderjit S. Dhillon,et al.  Generalized Nonnegative Matrix Approximations with Bregman Divergences , 2005, NIPS.

[18]  John F. Canny,et al.  Collaborative filtering with privacy via factor analysis , 2002, SIGIR '02.

[19]  Tong Zhang,et al.  A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data , 2005, J. Mach. Learn. Res..

[20]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.