Sensitivity to contrast modulation depends on carrier spatial frequency and orientation

[1]  D. P. Andrews Perception of Contours in the Central Fovea , 1965, Nature.

[2]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[3]  C. Blakemore,et al.  Lateral Inhibition between Orientation Detectors in the Human Visual System , 1970, Nature.

[4]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[5]  G. J. Burton,et al.  Evidence for non-linear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies. , 1973, Vision research.

[6]  D. Broadbent,et al.  Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency , 1975, Vision Research.

[7]  D. J. Sakrison,et al.  Structure and properties of a single channel in the human visual system , 1976, Vision Research.

[8]  R. Patterson Auditory filter shapes derived with noise stimuli. , 1976, The Journal of the Acoustical Society of America.

[9]  J P Thomas,et al.  Bandwidths of orientation channels in human vision. , 1979, Journal of the Optical Society of America.

[10]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[12]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[13]  G. Henning,et al.  Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments: I. Noise masks. , 1981, Journal of the Optical Society of America.

[14]  A. Watson Summation of grating patches indicates many types of detector at one retinal location , 1982, Vision Research.

[15]  J. Koenderink,et al.  Detectability of amplitude- and frequency-modulation of suprathreshold sine-wave gratings , 1982, Vision Research.

[16]  J. Nachmias,et al.  Masking by spatially-modulated gratings , 1983, Vision Research.

[17]  H. Wilson,et al.  Spatial frequency tuning of orientation selective units estimated by oblique masking , 1983, Vision Research.

[18]  H. Wilson,et al.  Orientation bandwidths of spatial mechanisms measured by masking. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[19]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[20]  Randolph Blake,et al.  Orientation selectivity in cats and humans assessed by masking , 1985, Vision Research.

[21]  J. J. Koenderink,et al.  Contrast detection and detection of contrast modulation for noise gratings , 1985, Vision Research.

[22]  H. Nothdurft Sensitivity for structure gradient in texture discrimination tasks , 1985, Vision Research.

[23]  David R. Badcock,et al.  Detection of spatial beats: Non-linearity or contrast increment detection? , 1986, Vision Research.

[24]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[25]  C. Sternini,et al.  Expression and cellular localization of substance P/neurokinin A and neurokinin B mRNAs in the rat retina , 1989, Visual Neuroscience.

[26]  J. Beck,et al.  Contrast and spatial variables in texture segregation: Testing a simple spatial-frequency channels model , 1989, Perception & psychophysics.

[27]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[28]  J. Dannemiller,et al.  Two-dimensional approach to psychophysical orientation tuning. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[29]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  L O Harvey,et al.  Visual masking at different polar angles in the two-dimensional Fourier plane. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[31]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[32]  H R Wilson,et al.  Curvature and separation discrimination at texture boundaries. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[33]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[34]  J. Nachmias Masked detection of gratings: The standard model revisited , 1993, Vision Research.

[35]  C L Baker,et al.  A processing stream in mammalian visual cortex neurons for non-Fourier responses. , 1993, Science.

[36]  N. Graham,et al.  Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation , 1993, Vision Research.

[37]  Andrew T. Smith,et al.  Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision , 1994, Vision Research.

[38]  C. Baker,et al.  Envelope-responsive neurons in areas 17 and 18 of cat. , 1994, Journal of neurophysiology.

[39]  Johannes M. Zanker,et al.  Interaction between primary and secondary mechanisms in human motion perception , 1994, Vision Research.

[40]  A. Watson,et al.  Spatial and Spatial Frequency Spreads Of Masking: Measurements and a Contrast-Gain-Control Model , 1995 .

[41]  M. Landy,et al.  Discrimination of orientation-defined texture edges , 1995, Vision Research.

[42]  G. Sperling,et al.  Measuring the spatial frequency selectivity of second-order texture mechanisms , 1995, Vision Research.

[43]  David J. Fleet,et al.  Linear filtering precedes nonlinear processing in early vision , 1996, Current Biology.

[44]  C L Baker,et al.  Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat. , 1996, Journal of neurophysiology.

[45]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[46]  Andrew B. Watson,et al.  Image quality and entropy masking , 1997, Electronic Imaging.

[47]  ILONA KOVÁCS,et al.  Non-Fourier Information in Bandpass Noise Patterns , 1997, Vision Research.

[48]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[49]  Isabelle Mareschal,et al.  A cortical locus for the processing of contrast-defined contours , 1998, Nature Neuroscience.

[50]  R F Hess,et al.  Spatial-frequency tuning of visual contour integration. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  L. P. O'Keefe,et al.  Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey , 1998, Visual Neuroscience.

[52]  S J Cropper,et al.  Detection of chromatic and luminance contrast modulation by the visual system. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[53]  D. Ringach,et al.  Tuning of orientation detectors in human vision , 1998, Vision Research.

[54]  R. Hess,et al.  The interaction of first- and second-order cues to orientation , 1999, Vision Research.

[55]  I Mareschal,et al.  Cortical processing of second-order motion , 1999, Visual Neuroscience.