Hypercubes are minimal controlled invariants for discrete-time linear systems with quantized scalar input

[1]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[2]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[3]  J. Shamma Optimization of the l∞-induced norm under full state feedback , 1996, IEEE Trans. Autom. Control..

[4]  R. Brockett,et al.  Systems with finite communication bandwidth constraints. I. State estimation problems , 1997, IEEE Trans. Autom. Control..

[5]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[6]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[7]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[8]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[9]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[10]  John Baillieul,et al.  Feedback Designs in Information-Based Control , 2002 .

[11]  Antonio Bicchi,et al.  On the reachability of quantized control systems , 2002, IEEE Trans. Autom. Control..

[12]  Sandro Zampieri,et al.  Stability analysis and synthesis for scalar linear systems with a quantized feedback , 2003, IEEE Trans. Autom. Control..

[13]  Sandro Zampieri,et al.  Performance evaluations of quantized stabilizers , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[14]  Sandro Zampieri,et al.  Quantized stabilization of linear systems: complexity versus performance , 2004, IEEE Transactions on Automatic Control.

[15]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[16]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[17]  G. Goodwin,et al.  Finite constraint set receding horizon quadratic control , 2004 .

[18]  S. Neema,et al.  Computing finitely reachable containable region for switching systems , 2005 .

[19]  Antonio Bicchi,et al.  Practical stabilization of discrete - Time linear SISO Systems under Assigned input and output quantization , 2006, ADHS.

[20]  Patrizio Colaneri,et al.  PRACTICAL STABILITY ANALYSIS FOR QUANTIZED CONTROL SYSTEMS VIA SMALL-GAIN THEOREM 1 , 2006 .

[21]  Antonio Bicchi,et al.  On the Stabilization of Linear Systems Under Assigned I/O Quantization , 2007, IEEE Transactions on Automatic Control.

[22]  A. Bicchi,et al.  SYNTHESIS FOR PRACTICAL STABILIZATION OF QUANTIZED LINEAR SYSTEMS , 2022 .